Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 1-8    DOI: 10.6046/zrzyyg.2023385
  矿山生态环境遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于多尺度样本集优化策略的矿区工业固废及露天采场遥感识别
邹海靖1,2(), 邹滨1,2(), 王玉龙1,2, 张波1,2, 邹伦文3
1.中南大学地球科学与信息物理学院,长沙 410083
2.自然资源部时空信息与智能服务重点实验室,长沙 410083
3.湖南师范大学地理科学学院,长沙 410081
Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy
ZOU Haijing1,2(), ZOU Bin1,2(), WANG Yulong1,2, ZHANG Bo1,2, ZOU Lunwen3
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
2. Key Laboratory of Spatio-temporal Information and Intelligent Services, Ministry of Natural Resources of China, Changsha 410083, China
3. College of Geographical Sciences, Hunan Normal University, Changsha 410081, China
全文: PDF(2912 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

及时准确掌握工业固废及露天采场的空间范围和分布情况对于固废污染精准管控和生态环境保护具有重要意义。遥感技术是有效的监测手段,但单一尺度样本集难以充分表达不同形态和大小的工业固废堆场及露天采场的特征,而构建多尺度样本集可以有效解决不同种类工业固废堆场及露天采场特征表达不完整的问题,进而提高模型识别精度和泛化能力。因此,该研究在充分考虑不同种类工业固废及露天采场形态和大小差异特征的基础上,提出了一种基于多尺度样本集优化策略的工业固废及露天采场遥感识别方法。该方法基于预处理后的GF-1B,GF-1C和GF-6号卫星遥感影像数据进行多尺度样本集制备,构建U-Net深度学习网络模型识别工业固废及露天采场,并与单尺度样本集模型精度对比验证识别效果。结果表明,基于多尺度样本集的U-Net深度学习网络模型识别精确率、召回率、F1分数和平均交并比分别可达81.23%,66.88%,73.36%和73.55%,相较于单尺度模型精度分别提升了6.02百分点、1.02百分点、3.12百分点和9.86百分点,可为工业固废及露天采场精准监测提供一种可靠的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹海靖
邹滨
王玉龙
张波
邹伦文
关键词 多尺度深度学习工业固废遥感识别    
Abstract

A timely and accurate understanding of the spatial extents and distributions of industrial solid waste and open pits in mining areas is significant for the precise control of solid waste contamination and the ecosystem conservation. Remote sensing technology is an effective monitoring method. However, single-scale sample sets fail to fully represent the features of industrial solid waste yards and open pits with different shapes and sizes. Constructing multiscale sample sets may be effective in solving the problem of incomplete feature representation for different industrial solid waste yards and open pits, thereby enhancing the identification accuracy and generalization capability of models. By fully considering the differences in the shape and size of different industrial solid waste yards and open pits, this study proposed a remote sensing identification method for industrial solid waste and open pits based on the multiscale sample set optimization strategy. In the proposed method, a multiscale sample set was prepared based on the preprocessed data of the GF-1B, GF-1C, and GF6 satellite remote sensing images. Subsequently, a U-Net deep learning network model was constructed to identify industrial solid waste and open pits. Finally, the identification accuracy was compared with that of the single-scale sample set model. The results show that the U-Net deep learning network model based on the multiscale sample set achieved identification accuracy of 81.23 %, recall of 66.88 %, F1-score of 73.36 %, and average intersection over union of 73.55 %, suggesting improvements by 6.02, 1.02, 3.12, and 9.86 percentage points, respectively, compared to the single-scale sample set model. Overall, this study provides a reliable approach for precisely monitoring industrial solid waste and open pits.

Key wordsmultiscale    deep learning    industrial solid waste    remote sensing identification
收稿日期: 2023-12-19      出版日期: 2025-07-01
ZTFLH:  TP79  
基金资助:国家重点研发项目“水质敏感区域采选冶固废资源环境属性及污染源精准甄别”(2020YFC1909201)
通讯作者: 邹滨(1981-),男,教授,博士生导师,研究方向为资源环境遥感监测、时空建模与数据分析。Email: 210010@csu.edu.cn
作者简介: 邹海靖(1999-),男,硕士研究生,研究方向为资源环境遥感监测。Email: 215012154@csu.edu.cn
引用本文:   
邹海靖, 邹滨, 王玉龙, 张波, 邹伦文. 基于多尺度样本集优化策略的矿区工业固废及露天采场遥感识别[J]. 自然资源遥感, 2025, 37(3): 1-8.
ZOU Haijing, ZOU Bin, WANG Yulong, ZHANG Bo, ZOU Lunwen. Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy. Remote Sensing for Natural Resources, 2025, 37(3): 1-8.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023385      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/1
遥感平台 图幅
数量/景
获取时间 空间分
辨率/m
波段范围/nm
GF-1B 3 2022-04-27 2(全色波段)
8(多光谱波段)
450~890
GF-1C 3 2022-10-14
GF-6 4 2022-12-24
Tab.1  遥感影像数据说明
目标类型 影像图例 特征概括
废石堆场 一般位于矿山或选矿厂附近,大多随意堆放,呈现不规则的矩形或圆形;影像上常呈现棕黑色、深灰色等,与周围地物存在明显色差
尾矿库 呈现出规则或不规则的三角形、半圆形、矩形等形状;影像上表现为明显的封闭区域,可见明显的阶梯状筑坝,常位于谷沟内;纹理特征明显细致,色调较亮
露天采场 周边常有显著的矿山裸露地带,矿体颜色明亮;存在坑洞或裂缝等纹理特征,影像上可识别出道路或行车痕迹
Tab.2  工业固废与露天采场遥感解译标志
Fig.1  工业固废与露天采场的分布
Fig.2  U-Net神经网络模型结构图
训练参数 参数值
初始学习率 0.001
优化器 Adam
损失函数 Binary cross entropy
批尺寸 3
迭代次数 200
Tab.3  模型参数设置
模型 样本集 精确率 召回率 F1分数 mIoU
U-Net 单尺度 75.21 65.86 70.24 63.69
多尺度 81.23 66.88 73.36 73.55
DeepLabv3+ 单尺度 73.06 58.68 65.09 61.70
多尺度 79.52 58.29 67.27 69.91
Segmenter 单尺度 66.72 68.59 67.64 60.39
多尺度 71.81 69.28 70.52 65.81
Tab.4  不同尺度样本集模型识别精度对比
Fig.3-1  不同尺度样本集模型损失函数
Fig.3-2  不同尺度样本集模型精确率
类型 单尺度样本集 多尺度样本集
遥感影像 样本标注 识别结果 遥感影像 样本标注 识别结果
废石堆场
尾矿库
露天采场
Tab.5  不同尺度样本集模型识别结果对比
[1] 孙坚, 耿春雷, 张作泰, 等. 工业固体废弃物资源综合利用技术现状[J]. 材料导报, 2012, 26(11):105-109.
Sun J, Geng C L, Zhang Z T, et al. Present situation of comprehensive utilization technology of industrial solid waste[J]. Materials Reports, 2012, 26(11):105-109.
[2] Gao S, Chen Y, Li K, et al. Mapping opencast iron mine and mine solid waste based on a new spectral index from medium spatial re-solution satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:7788-7798.
[3] Chen W, Peng L, Hu K, et al. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction:A mirror of coherent structural variation[J]. Journal of Hazardous Materials, 2020,393:122425.
[4] 刘雪龙. 面向对象的遥感影像工业固体废物信息提取方法研究[D]. 北京: 中国地质大学(北京), 2013.
Liu X L. Object-oriented remote sensing images industrial solid waste information extraction method research[D]. Beijing: China University of Geosciences(Beijing), 2013.
[5] Kwarteng A Y, Al-Enezi A. Assessment of Kuwait’s Al-Qurain landfill using remote sensing imagery[J]. Journal of Environmental Science and Health Part A:Toxic/Hazardous Substances and Environmental Engineering, 2004, 39(2):351-364.
[6] Bai T, Sun K, Deng S, et al. Multi-scale hierarchical sampling change detection using Random Forest for high-resolution satellite imagery[J]. International Journal of Remote Sensing, 2018, 39(21):7523-7546.
[7] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sen-sing, 2012,67:93-104.
[8] Li P, Xu H, Guo J. Urban building damage detection from very high resolution imagery using OCSVM and spatial features[J]. International Journal of Remote Sensing, 2010, 31(13):3393-3409.
[9] Ye S, Chen D, Yu J. A targeted change-detection procedure by combining change vector analysis and post-classification approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,114:115-124.
[10] Silvestri S, Omri M. A method for the remote sensing identification of uncontrolled landfills:Formulation and validation[J]. International Journal of Remote Sensing, 2008, 29(4):975-989.
[11] 吴倩雯, 况润元, 张刚华, 等. 东江源稀土矿区土地利用变化遥感监测研究[J]. 测绘科学, 2019, 44(3):51-56.
Wu Q W, Kuang R Y, Zhang G H, et al. Remote sensing monitoring of land-use change in rare earth mining area in the source region of Dongjiang River[J]. Science of Surveying and Mapping, 2019, 44(3):51-56.
[12] 卢遥, 卢小平, 武永斌, 等. 综合机载LiDAR与高分影像的煤矿区典型地物提取方法[J]. 测绘通报, 2015(12):57-59.
doi: 10.13474/j.cnki.11-2246.2015.378
Lu Y, Lu X P, Wu Y B, et al. Typical surface features extraction in mining area based on data of LiDAR and WorldView-2[J]. Bulletin of Surveying and Mapping, 2015(12):57-59.
doi: 10.13474/j.cnki.11-2246.2015.378
[13] Liu T, Zheng P, Bao J. Deep learning-based welding image recognition:A comprehensive review[J]. Journal of Manufacturing Systems, 2023,68:601-625.
[14] 李庆, 陈俊杰, 李庆亭, 等. 基于SSD模型的京津冀地区尾矿库检测[J]. 遥感技术与应用, 2021, 36(2):293-303.
doi: 10.11873/j.issn.1004-0323.2021.2.0293
Li Q, Chen J J, Li Q T, et al. Detection of tailings pond in Beijing-Tianjin-Hebei Region based on SSD model[J]. Remote Sensing Technology and Application, 2021, 36(2):293-303.
[15] 闫凯, 沈汀, 陈正超, 等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
Yan K, Shen T, Chen Z C, et al. Automatic extraction of tailing pond based on SSD of deep learning[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
[16] 刘冰洁, 邢旭东, 吴浩, 等. 深度学习支持下的尾矿库遥感识别方法[J]. 测绘科学, 2021, 46(12):129-139.
Liu B J, Xing X D, Wu H, et al. Remote sensing identification of tailings pond based on deep learning model[J]. Science of Surveying and Mapping, 2021, 46(12):129-139.
[17] 张峰极. 多源遥感影像露天开采区深度学习提取方法研究[D]. 合肥: 安徽大学, 2019.
Zhang F J. Research on deep learning extraction method in open mining area based on multi-source remote sensing images[D]. Hefei: Anhui University, 2019.
[18] 张蜀军. 基于实例分割的高分遥感无序固废堆场识别[D]. 成都: 西南交通大学, 2021.
Zhang S J. Disorderd solid waste yards recognition from high-resolution remote sensing images based on instance segmentation[D]. Chengdu: SouthwestJiaotong University, 2021.
[19] 张仙, 李伟, 陈理, 等. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2):25-33.doi: 10.6046/zrzyyg.2022141.
Zhang X, Li W, Chen L, et al. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2):25-33.doi: 10.6046/zrzyyg.2022141.
[20] 张成业, 邢江河, 李军, 等. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
Zhang C Y, Xing J H, Li J, et al. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
[21] 王浩. 融入图卷积全局推理的固废堆场高分遥感检测及其环境影响力评估[D]. 成都: 西南交通大学, 2021.
Wang H. High-resolution remote sensing detection of solid waste yard integrated with graph convolution global reasoning and its environmental impact assessment[D]. Chengdu: SouthwestJiaotong University, 2021.
[22] 段彦玮, 文倩, 孙水娟, 等. 矿产资源型城市的生态承载力与可持续发展研究——以湖南省郴州市为例[J]. 湖南农机, 2011, 38(3):110-112.
Duan Y W, Wen Q, Sun S J, et al. Research on ecological carrying capacity and sustainable development:In a mining city a case study in Chenzhou City[J]. Hunan Agricultural Machinery, 2011, 38(3):110-112.
[23] 李威, 邓武军, 邓家琪, 等. 郴州创建国家可持续发展议程创新示范区的实施路径与思考[J]. 中国工程咨询, 2023(8):46-50.
Li W, Deng W J, Deng J Q, et al. Implementation path and thinking of creating national sustainable development agenda innovation demonstration zone in Chenzhou[J]. China Engineering Consultants, 2023(8):46-50.
[24] 胡杰, 张莹, 谢仕义. 国产遥感影像分类技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(3):1-13.
doi: 10.3778/j.issn.1002-8331.2007-0101
Hu J, Zhang Y, Xie S Y. Summary of research progress on application of domestic remote sensing image classification technology[J]. Computer Engineering and Applications, 2021, 57(3):1-13.
doi: 10.3778/j.issn.1002-8331.2007-0101
[25] 何直蒙, 丁海勇, 安炳琪. 高分辨率遥感影像建筑物提取的空洞卷积E-Unet算法[J]. 测绘学报, 2022, 51(3):457-467.
doi: 10.11947/j.AGCS.2022.20200601
He Z M, Ding H Y, An B Q. E-Unet:Aatrous convolution-based neural network for building extraction from high-resolution remote sensing images[J]. ActaGeodaetica et Cartographica Sinica, 2022, 51(3):457-467.
[26] Chen D Y, Peng L, Li W C, et al. Building extraction and number statistics in WUI areas based on UNet structure and ensemble learning[J]. Remote Sensing, 2021, 13(6):1172.
[27] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision.Springer, 2018:833-851.
[28] Strudel R, Garcia R, Laptev I, et al. Segmenter:Transformer for semantic segmentation[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE, 2021:7242-7252.
[29] 许玥, 冯梦如, 皮家甜, 等. 基于深度学习模型的遥感图像分割方法[J]. 计算机应用, 2019, 39(10):2905-2914.
doi: 10.11772/j.issn.1001-9081.2019030529
Xu Y, Feng M R, Pi J T, et al. Remote sensing image segmentation method based on deep learning model[J]. Journal of Computer Applications, 2019, 39(10):2905-2914.
doi: 10.11772/j.issn.1001-9081.2019030529
[1] 陈兰兰, 范永超, 肖海平, 万俊辉, 陈磊. 结合时序InSAR与IRIME-LSTM模型的大范围矿区地表沉降预测[J]. 自然资源遥感, 2025, 37(3): 245-252.
[2] 马飞, 孙陆鹏, 杨飞霞, 徐光宪. 基于变换域多尺度加权神经网络的全色锐化[J]. 自然资源遥感, 2025, 37(3): 76-84.
[3] 叶武剑, 谢林峰, 刘怡俊, 温晓卓, 李扬. 基于MobileNet的轻量化云检测模型[J]. 自然资源遥感, 2025, 37(3): 95-103.
[4] 郭伟, 李煜, 金海波. 高维上下文注意和双感受野增强的SAR船舶检测[J]. 自然资源遥感, 2025, 37(3): 104-112.
[5] 魏林, 冉浩翔, 尹玉萍. 多尺度特征衔接的高光谱分类网络[J]. 自然资源遥感, 2025, 37(3): 113-122.
[6] 陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚. 基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例[J]. 自然资源遥感, 2025, 37(3): 133-141.
[7] 郑宗生, 高萌, 周文睆, 王政翰, 霍志俊, 张月维. 基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割[J]. 自然资源遥感, 2025, 37(2): 11-18.
[8] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[9] 刘晨晨, 葛小三, 武永斌, 余海坤, 张蓓蓓. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1): 31-37.
[10] 黄川, 李雅琴, 祁越然, 魏晓燕, 邵远征. 基于3D-CAE的高光谱解混及小样本分类方法[J]. 自然资源遥感, 2025, 37(1): 8-14.
[11] 陈理, 张仙, 李伟, 李瑜, 陈昊旻. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4): 55-61.
[12] 郑宗生, 王政翰, 王振华, 卢鹏, 高萌, 霍志俊. 改进3D-Octave卷积的高光谱图像分类方法[J]. 自然资源遥感, 2024, 36(4): 82-91.
[13] 郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
[14] 张瑞瑞, 夏浪, 陈立平, 丁晨琛, 郑爱春, 胡新苗, 伊铜川, 陈梅香, 陈天恩. 深度语义分割网络无人机遥感松材线虫病变色木识别[J]. 自然资源遥感, 2024, 36(3): 216-224.
[15] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发