Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 148-155    DOI: 10.6046/zrzyyg.2024345
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于Sentinel-2影像和BenchSegNet模型的露天煤矿台阶提取
李凯旋(), 刘俊伟, 王智博, 蒋文泷, 蔡汉林, 雷少刚, 杨永均()
中国矿业大学环境与测绘学院,徐州 221116
Extracting information on benches in open-pit coal mines based on Sentinel-2 images and the BenchSegNet model
LI Kaixuan(), LIU Junwei, WANG Zhibo, JIANG Wenlong, CAI Hanlin, LEI Shaogang, YANG Yongjun()
School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
全文: PDF(4150 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

台阶是露天煤矿的重要地物之一,可以反映露天煤矿的生产状态,利用遥感影像提取台阶可以为煤矿生产监测和生态保护修复提供重要依据。该文构建了BenchSegNet深度学习模型,用于从Sentinel-2影像中提取露天煤矿台阶。研究结果表明,BenchSegNet继承了SegFormer强大的泛化性能和U-Net强大的细节信息提取能力,准确率达到97.69%。相较于SegFormer模型,BenchSegNet模型的精确率、召回率和F1分数分别提升了6.19百分点、4.09百分点和5.06百分点,相较于U-Net和ASPP-UNet这2种传统的卷积神经网络模型,3个指标均提升近10百分点,相较于随机森林和支持向量机这2种传统的机器学习算法,3种指标均提升近15百分点。可以看出,BenchSegNet深度学习模型具有较高的精度,同时Sentinel-2卫星具有全球覆盖、重访周期短、空间分辨率高的特点,因此结合Sentinel-2影像和BenchSegNet模型可以有效监测露天煤矿台阶的变化过程。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凯旋
刘俊伟
王智博
蒋文泷
蔡汉林
雷少刚
杨永均
关键词 环境遥感深度学习露天煤矿台阶SegFormer    
Abstract

Benches, important surface features in open-pit coal mines, can reflect the production status in the mines. Extracting information about benches from remote sensing images can provide a significant basis for production monitoring in coal mines, as well as ecological protection and restoration. This study established the BenchSegNet deep learning model for extracting information on benches in open-pit coal mines from Sentinel-2 images. The results indicate that the BenchSegNet model inherited the strong generalization capability of SegFormer and the powerful detail extraction ability of U-Net, achieving an accuracy of 97.69%. Compared to the SegFormer model, the BenchSegNet model demonstrated increases of 6.19 percentage points, 4.09 percentage points, and 5.06 percentage points in precision, recall, and F1 score, respectively. Compared to two traditional convolutional neural network models, i.e., U-Net and ASPP-UNet, the BenchSegNet model exhibited increases of nearly 10 percentage points in the three metrics. In addition, compared to two traditional machine learning algorithms, i.e., random forest and support vector machine, the BenchSegNet model showed increases of approximately 15 percentage points in the three metrics. The comparisons verify that the BenchSegNet deep learning model delivers high accuracy. Given that the Sentinel-2 satellite is characterized by global coverage, short revisit time, and high spatial resolution, the combination of Sentinel-2 images and the BenchSegNet model can effectively monitor the change process of benches in open-pit coal mines.

Key wordsenvironmental remote sensing    deep learning    open-pit coal mine    bench    SegFormer
收稿日期: 2024-10-24      出版日期: 2025-12-31
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“大型露天矿区生态退化机理与保护修复集成监管技术”(2023YFF1306005);江苏省大学生创新创业训练计划项目“基于深度学习框架的全球露天采煤足迹监测”(202410290392Y)
通讯作者: 杨永均(1990-),男,博士,副教授,主要从事环境遥感研究。Email: y.yang@cumt.edu.cn
作者简介: 李凯旋(2002-),男,硕士研究生,主要从事环境遥感研究。Email: kaixuan.li@cumt.edu.cn
引用本文:   
李凯旋, 刘俊伟, 王智博, 蒋文泷, 蔡汉林, 雷少刚, 杨永均. 基于Sentinel-2影像和BenchSegNet模型的露天煤矿台阶提取[J]. 自然资源遥感, 2025, 37(6): 148-155.
LI Kaixuan, LIU Junwei, WANG Zhibo, JIANG Wenlong, CAI Hanlin, LEI Shaogang, YANG Yongjun. Extracting information on benches in open-pit coal mines based on Sentinel-2 images and the BenchSegNet model. Remote Sensing for Natural Resources, 2025, 37(6): 148-155.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024345      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/148
Fig.1  本文技术流程
Fig.2  BenchSegNet框架
台阶 影像 标签 RF SVM U-Net ASPP-UNet SegFormer BenchSegNet
直线型
台阶
弯曲型
台阶
折线型
台阶
Tab.1  基于不同方法的露天煤矿台阶提取结果对比
方法 精确率 召回率 F1分数 准确率
RF 64.56 63.33 63.94 93.71
SVM 65.32 59.11 62.06 94.60
U-Net 66.77 66.01 66.39 96.02
ASPP-UNet 66.16 69.46 67.77 96.12
SegFormer 74.74 69.38 71.96 97.20
BenchSegNet 80.93 73.47 77.02 97.69
Tab.2  不同方法的精度评价指标对比
方法 精确率 召回率 F1分数
SegFormer 74.74 69.38 71.96
SegFormer+Iimage 78.04 68.11 72.74
SegFormer+U-Net 76.27 72.35 74.26
SegFormer+Iimage+U-Net(BenchSegNet) 80.93 73.47 77.02
Tab.3  消融实验结果
类型 2022年3月 2022年11月 2023年3月 2023年11月

芒来煤
矿影像


台阶提
取结果
Tab.4  芒来露天煤矿2022—2023年台阶提取结果
台阶 影像 标签 U-Net ASPP-UNet SegFormer BenchSegNet
直线型台阶
弯曲型台阶
折线型台阶
图例
Tab.5  每个模型解码器产生的置信度热力图
[1] Qin K, Hu W, He Q, et al. Individual coal mine methane emissions constrained by eddy covariance measurements:Low bias and missing sources[J]. Atmospheric Chemistry and Physics, 2024, 24(5):3009-3028.
[2] 张峰极, 吴艳兰, 姚雪东, 等. 基于改进DenseNet网络的多源遥感影像露天开采区智能提取方法[J]. 遥感技术与应用, 2020, 35(3):673-684.
doi: 10.11873/j.issn.1004-0323.2020.3.0673
Zhang F J, Wu Y L, Yao X D, et al. Opencast mining area intelligent extraction method for multi-source remote sensing image based on improved DenseNet[J]. Remote Sensing Technology and Application, 2020, 35(3):673-684.
[3] 张成业, 李飞跃, 李军, 等. 基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类[J]. 煤田地质与勘探, 2022, 50(6):94-103.
Zhang C Y, Li F Y, Li J, et al. Recognition of land use on open-pit coal mining area based on DeepLabv3+ and GF-2 high-resolution images[J]. Coal Geology & Exploration, 2022, 50(6):94-103.
[4] Liu Y, Zhang J. A lightweight convolutional neural network based on dense connection for open-pit coal mine service identification using the edge-cloud architecture[J]. Journal of Cloud Computing, 2023, 12(1):32.
[5] Ren Z, Wang L, He Z. Open-pit mining area extraction from high-resolution remote sensing images based on EMANet and FC-CRF[J]. Remote Sensing, 2023, 15(15):3829.
doi: 10.3390/rs15153829
[6] Shao M, Li K, Wen Y, et al. Large-scale foundation model enhanced few-shot learning for open-pit minefield extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2024,21:3003105.
[7] Chen T, Zheng X, Niu R, et al. Open-pit mine area mapping with Gaofen-2 satellite images using U-net+[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15:3589-3599.
[8] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30(NIPS 2017). Curran Associates Inc., 2017:6000-6010.
[9] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J/OL]. arXiv, 2020(2020-10-22).https://arXiv.org/abs/2010.11929.
[10] Xie E Z, Wang W H, Yu Z D, et al. SegFormer:Simple and efficient design for semantic segmentation with Transformers[J/OL]. arXiv, 2021(2021-05-31).https://arxiv.org/abs/2015.15203.
[11] 杨靖怡, 李芳, 康晓东, 等. 基于SegFormer的超声影像图像分割[J]. 计算机科学, 2023, 50(s1):414-419.
Yang J Y, Li F, Kang X D, et al. Ultrasonic image segmentation based on SegFormer[J]. Computer Science, 2023, 50(s1):414-419.
[12] Lin X, Cheng Y, Chen G, et al. Semantic segmentation of China’s coastal wetlands based on Sentinel-2 and SegFormer[J]. Remote Sensing, 2023, 15(15):3714.
doi: 10.3390/rs15153714
[13] Li M, Rui J, Yang S, et al. Method of building detection in optical remote sensing images based on SegFormer[J]. Sensors, 2023, 23(3):1258.
doi: 10.3390/s23031258
[14] 李旭涛, 刘志明, 张幼振, 等. 我国露天煤矿开采工艺及装备研究现状与发展趋势[J]. 露天采矿技术, 2023, 38(5):6-9,13.
Li X T, Liu Z M, Zhang Y Z, et al. Research status and development trend of mining technology and equipment in open-pit coal mine in China[J]. Opencast Mining Technology, 2023, 38(5):6-9,13.
[15] 王佳雪, 刘春芳, 张世虎. 北方防沙带典型县域生态安全格局研究[J]. 生态学报, 2022, 42(10):3989-3997.
Wang J X, Liu C F, Zhang S H. Ecological security pattern of typical counties in northern sand prevention belts[J]. Acta Ecologica Sinica, 2022, 42(10):3989-3997.
[16] Chen T, Shu J, Han L, et al. Landslide mechanism and stability of an open-pit slope:The Manglai open-pit coal mine[J]. Frontiers in Earth Science, 2023,10:1038499.
[17] Phiri D, Simwanda M, Salekin S, et al. Sentinel-2 data for land cover/use mapping:A review[J]. Remote Sensing, 2020, 12(14):2291.
doi: 10.3390/rs12142291
[18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386
[19] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Springer International Publishing, 2015:234-241.
[20] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
[1] 李春意, 赵鹏翔, 丁来中, 王文杰, 高彦涛, 买志瑶, 郭亚星. 基于深度学习的东秦岭羟基蚀变信息遥感解译及可靠性检验[J]. 自然资源遥感, 2025, 37(6): 228-240.
[2] 刘晋宇, 胡晋山, 康建荣, 朱益虎, 王胜利. 基于PSR和时序预测模型的露天煤矿区生态环境质量遥感评价[J]. 自然资源遥感, 2025, 37(6): 182-190.
[3] 李英龙, 邓毓弸, 孔赟珑, 陈静波, 孟瑜, 刘帝佑. 基于全色-多光谱双流卷积网络的端到端地物分类方法[J]. 自然资源遥感, 2025, 37(5): 152-161.
[4] 吴志军, 丛铭, 许妙忠, 韩玲, 崔建军, 赵超英, 席江波, 杨成生, 丁明涛, 任超锋, 顾俊凯, 彭晓东, 陶翊婷. 基于视觉双驱动认知的高分辨率遥感影像自学习分割方法[J]. 自然资源遥感, 2025, 37(5): 73-90.
[5] 方留杨, 杨昌浩, 舒东, 杨学昆, 陈兴通, 贾志文. 基于双重特征融合的复杂环境下滑坡检测方法[J]. 自然资源遥感, 2025, 37(5): 91-100.
[6] 陈兰兰, 范永超, 肖海平, 万俊辉, 陈磊. 结合时序InSAR与IRIME-LSTM模型的大范围矿区地表沉降预测[J]. 自然资源遥感, 2025, 37(3): 245-252.
[7] 邹海靖, 邹滨, 王玉龙, 张波, 邹伦文. 基于多尺度样本集优化策略的矿区工业固废及露天采场遥感识别[J]. 自然资源遥感, 2025, 37(3): 1-8.
[8] 郭伟, 李煜, 金海波. 高维上下文注意和双感受野增强的SAR船舶检测[J]. 自然资源遥感, 2025, 37(3): 104-112.
[9] 陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚. 基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例[J]. 自然资源遥感, 2025, 37(3): 133-141.
[10] 郑宗生, 高萌, 周文睆, 王政翰, 霍志俊, 张月维. 基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割[J]. 自然资源遥感, 2025, 37(2): 11-18.
[11] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[12] 黄川, 李雅琴, 祁越然, 魏晓燕, 邵远征. 基于3D-CAE的高光谱解混及小样本分类方法[J]. 自然资源遥感, 2025, 37(1): 8-14.
[13] 张瑞瑞, 夏浪, 陈立平, 丁晨琛, 郑爱春, 胡新苗, 伊铜川, 陈梅香, 陈天恩. 深度语义分割网络无人机遥感松材线虫病变色木识别[J]. 自然资源遥感, 2024, 36(3): 216-224.
[14] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
[15] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发