Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 201-210    DOI: 10.6046/zrzyyg.2024374
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于改进DeepLabV3plus架构的洱海流域水体精细提取
张莹1(), 陈运春1,2,3,4, 郭晓飞1,2,3,4, 吴晓聪1, 陈凤林1, 曾维军1,2,3,4()
1.云南农业大学水利学院,昆明 650201
2.云南省高校绿色智慧农田与碳减排工程研究中心,昆明 650201
3.云南省智慧农业与水安全国际联合研发中心,昆明 650201
4.自然资源部云南山间盆地土地利用野外科学观测研究站,昆明 650201
Fine-scale information extraction of water bodies in the Erhai Lake Basin based on an improved DeepLabV3plus architecture
ZHANG Ying1(), CHEN Yunchun1,2,3,4, GUO Xiaofei1,2,3,4, WU Xiaocong1, CHEN Fenglin1, ZENG Weijun1,2,3,4()
1. College of Water Conservancy, Yunnan Agricultural University, Kunming 650201,China
2. Green Smart Agricultural Field and Carbon Emission Reduction Engineering Research Center of University in Yunnan Province, Kunming 650201, China
3. International Joint Research and Development Centre for Smart Agriculture and Water Security in Yunnan, Kunming 650201, China
4. Field Scientific Observation and Research Station of Yunnan Intermountain Basin Land Utilization of Ministry of Natural Resources, Kunming 650201, China
全文: PDF(4641 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

传统方法提取细小水体的效果差、精度低,难以满足实际需求,该文以洱海流域的吉林一号国产高分卫星影像为数据源,提出一种改进DeepLabV3plus的深度学习语义分割方法,将编码结构ResNet101替换成EfficientNet-B4,创新性地将二元交叉熵损失(binary cross-entropy loss,BCE Loss)和Dice Loss损失函数进行联合,筛选出了洱海流域精细提取水体的最优方法。结果表明: ①改进DeepLabV3plus模型较传统方法提取的水体边界效果更佳,更能准确识别主要水体,尤其在细小溪流的提取上表现优于传统方法; ②改进DeepLabV3plus模型在精确率(98.87%)、召回率(99.30%)和F1分数(99.08%)上均高于归一化差异水体指数(normalized difference water index,NDWI)和面向对象法; ③在细节对比中,改进的DeepLabV3plus能够有效抑制建筑物阴影、植被遮挡以及复杂地物的影响,提升了细小水体和复杂边缘区域的提取效果。此外,消融实验表明,联合损失函数与复合缩放策略的引入分别将平均交并比提升了0.62和3.07百分点,显著提高了模型的分割精度与对多尺度语义信息的提取能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张莹
陈运春
郭晓飞
吴晓聪
陈凤林
曾维军
关键词 改进DeepLabV3plus高分遥感影像语义分割洱海流域水体提取    
Abstract

Traditional methods for information extraction of small water bodies suffer from poor performance and low accuracy, failing to meet actual needs. Using the high-resolution images of the Erhai Lake basin from the Jilin-1 domestic satellite as the data source, this study proposed a deep learning-based semantic segmentation method using an improved DeepLabV3plus model. Replacing the ResNet-101 encoder with EfficientNet-B4, this study innovatively combined the BCE Loss and Dice Loss functions, identifying the optimal method for fine-scale information extraction of water bodies in the Erhai Lake Basin. The results indicate that compared to traditional methods, the improved DeepLabV3plus model performed better in the information extraction of water boundaries, enabling accurate identification of main water bodies, especially small streams. The improved DeepLabV3plus model exhibited higher precision (98.87%), recall (99.30%), and F1-Score (99.08%) than the normalized difference water index (NDWI) and object-oriented methods. Regarding comparison of details, the improved DeepLabV3plus model can effectively suppress the influence of building shadows, vegetation occlusion, and complex surface features, improving the information extraction effects of small water bodies and complex edge areas. In addition, ablation experiments show that the introduction of the combined loss functions and compound scaling strategy increased mIoU by 0.62% and 3.07%, respectively, significantly enhancing the model's segmentation accuracy and ability to extract multi-scale semantic information.

Key wordsimproved DeepLabV3plus    high-resolution remote sensing image    semantic segmentation    Erhai Lake Basin    water body information extraction
收稿日期: 2024-11-19      出版日期: 2025-12-31
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“洱海典型流域水系网络-布局时空演化机理及其生态调控”(42361043);云南省教育厅科学研究基金项目“基于 DeepLabV3plus 模型和吉林一号高分影像的洱海水体精细提取方法研究”(2025Y0528)
通讯作者: 曾维军(1979-),男,教授,主要从事资源环境遥感、土地评价及资源环境规划研究。Email: zengweijunde@163.com
作者简介: 张莹(1999-),女,硕士研究生,主要从事资源与环境遥感研究。Email: ynauzy@163.com
引用本文:   
张莹, 陈运春, 郭晓飞, 吴晓聪, 陈凤林, 曾维军. 基于改进DeepLabV3plus架构的洱海流域水体精细提取[J]. 自然资源遥感, 2025, 37(6): 201-210.
ZHANG Ying, CHEN Yunchun, GUO Xiaofei, WU Xiaocong, CHEN Fenglin, ZENG Weijun. Fine-scale information extraction of water bodies in the Erhai Lake Basin based on an improved DeepLabV3plus architecture. Remote Sensing for Natural Resources, 2025, 37(6): 201-210.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024374      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/201
Fig.1  研究区地理位置
卫星型号 传感器类
型与编号
光谱辐照度/(W·m-2·μm-1) 幅宽/km 数量/景
全色 绿 近红外
JL1GF02A PMS1 1 595.47 1 980.49 1 853.85 1 568.66 1 083.21 21.5×21.5 2
PMS2 1 584.75 1 982.68 1 865.88 1 594.10 1 078.11 4
JL1GF02B PMS2 1 597.33 1 972.83 1 852.77 1 583.18 1 053.48 1
JL1GF02F PMS2 1 532.65 1 980.17 1 866.51 1 590.60 1 081.68 1
JL1GF03B02 PMS 1 729.96 1 973.55 1 868.33 1 533.91 1 073.28 17.5×17.5 1
JL1GF03B04 PMS 1 733.37 1 974.94 1 866.99 1 540.12 1 076.20 1
JL1KF01A PMS03 1 553.42 1 971.64 1 862.81 1 558.79 1 063.32 23×23 1
PMS05 1 554.59 1 980.95 1 863.34 1 551.80 1 059.28 2
PMS06 1 544.92 1 977.95 1 862.62 1 553.75 1 072.92 4
Tab.1  吉林一号卫星影像参数
Fig.2  吉林一号高分02F星影像
Fig.3  最优分割尺度效果图
Fig.4  改进的DeepLabV3plus模型结构
Fig.5  洱海北部提取效果图
Fig.6  洱海西部提取效果图
指标 改进的DeepLabV3plus NDWI 面向对象
精确率 98.87 94.32 94.80
召回率 99.30 93.73 98.90
F1分数 99.08 96.62 96.80
误提率 1.13 5.68 5.20
漏提率 0.70 6.27 1.10
Tab.2  水体提取精度对比
区域 原始影像 标签 本文方法 NDWI 面向对象
方法
A
B
C
D
Tab.3  水体提取细节效果
网络模型 F1分数 mIoU
基准网络 99.32 94.64
DeepLabV3plus+loss 99.40 95.26
DeepLabV3plus+loss+EfficientNet-B4 99.71 97.71
Tab.4  消融实验结果对比
[1] Li Z, Zhu Q Q, Yang J H, et al. A cross-domain object-semantic matching framework for imbalanced high spatial resolution imagery water-body extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:5629015.
[2] 杨先增, 周亚男, 张新, 等. 融合边缘特征与语义信息的人工坑塘精准提取方法[J]. 地球信息科学学报, 2022, 24(4):766-779.
doi: 10.12082/dqxxkx.2022.210489
Yang X Z, Zhou Y N, Zhang X, et al. Accurate extraction of artificial pit-pond integrating edge features and semantic information[J]. Journal of Geo-Information Science, 2022, 24(4):766-779.
[3] 薛源, 覃超, 吴保生, 等. 基于多源国产高分辨率遥感影像的山区河流信息自动提取[J]. 清华大学学报(自然科学版), 2023, 63(1):134-145.
doi: 10.16511/j.cnki.qhdxxb.2022.22.043
Xue Y, Qin C, Wu B S, et al. Automatic extraction of mountain river information from multiple Chinese high-resolution remote sensing satellite images[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(1):134-145.
[4] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[5] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140:23-35.
[6] 王春霞, 张俊, 李屹旭, 等. 一种基于Landsat8的多波段组合水体指数模型[J]. 测绘通报, 2022(5):20-25.
doi: 10.13474/j.cnki.11-2246.2022.0135
Wang C X, Zhang J, Li Y X, et al. A multi-band combination water index model based on Landsat8[J]. Bulletin of Surveying and Mapping, 2022(5):20-25.
[7] Rishikeshan C A, Ramesh H. An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:11-21.
[8] 李红霞, 石云, 丁中杰, 等. 结合多源遥感数据和面向对象的旱区湿地信息提取[J]. 环境科学, 2025, 46(5):3127-3138.
Li H X, Shi Y, Ding Z J, et al. Combining multi-source remote sensing data and object-oriented wetland information extraction in arid areas[J]. Environmental Science, 2025, 46(5):3127-3138.
doi: 10.1021/es204272v
[9] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[10] 孟月波, 王静, 刘光辉. 多层级特征增强聚合的遥感图像细小水体提取[J]. 探测与控制学报, 2023, 45(6):123-134.
Meng Y B, Wang J, Liu G H. Multi-level feature enhancement aggregation for fine water extraction in remote sensing images[J]. Journal of Detection & Control, 2023, 45(6):123-134.
[11] Tan M, Le Q. EfficientNet:Rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. PMLR, 2019:6105-6114.
[12] 杨品燕, 李绍媛. 洱海流域环境保护和综合管理浅析[J]. 绿色科技, 2019(14):197-198.
Yang P Y, Li S Y. Analysis on environmental protection and comprehensive management in Erhai Lake Basin[J]. Journal of Green Science and Technology, 2019(14):197-198.
[13] 何紫玲, 陈运春, 郭晓飞, 等. 基于FSO算法的洱海流域土地利用分类适用性研究[J]. 农业工程, 2024, 14(9):126-133.
He Z L, Chen Y C, Guo X F, et al. Applicability of land use classification in Erhai Basin based on FSO algorithm[J]. Agricultural Engineering, 2024, 14(9):126-133.
[14] 贾波. 基于高分一号卫星影像的水体信息提取方法初探[J]. 经纬天地, 2024(3):6-10.
Jia B. Preliminary exploration on water body information extraction method based on Gaofen No.1 satellite image[J]. Survey World, 2024(3):6-10.
[15] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60.
doi: 10.1186/s40537-019-0197-0
[16] 毛转梅, 刘青, 彭尔瑞, 等. 基于NEWI模型的典型岩溶区普者黑流域水体信息提取[J]. 中国农村水利水电, 2021(1):71-75.
Mao Z M, Liu Q, Peng E R, et al. Puzhehei River Basin water body information extraction based on the typical karst area of NEWI model[J]. China Rural Water and Hydropower, 2021(1):71-75.
[17] 马丹华, 崔雯卓, 冯雪娇, 等. 一种多水体类型地区的坑塘水面精准提取方法[J]. 测绘科学, 2023, 48(11):104-116.
Ma D H, Cui W Z, Feng X J, et al. A method for accurately extracting the water surface of pits and ponds in areas with multiple water body types[J]. Science of Surveying and Mapping, 2023, 48(11):104-116.
[18] 王钰, 董亚坤, 何紫玲, 等. 基于Sentinel-2A影像的复合轮作种植结构提取[J]. 南方农业学报, 2023, 54(8):2490-2498.
Wang Y, Dong Y K, He Z L, et al. Extraction of compound rotation planting structure based on Sentinel-2A image[J]. Journal of Southern Agriculture, 2023, 54(8):2490-2498.
[19] 董哲, 王凌, 朱西存, 等. 光谱模型结合面向对象法的山区水体提取[J]. 遥感信息, 2022, 37(4):121-127.
Dong Z, Wang L, Zhu X C, et al. Water extraction in mountainous area based on spectral model and object-oriented method[J]. Remote Sensing Information, 2022, 37(4):121-127.
[20] 申秋慧, 张宏军, 徐有为, 等. 知识图谱嵌入模型中的损失函数研究综述[J]. 计算机科学, 2023, 50(4):149-158.
doi: 10.11896/jsjkx.211200175
Shen Q H, Zhang H J, Xu Y W, et al. Comprehensive survey of loss functions in knowledge graph embedding models[J]. Computer Science, 2023, 50(4):149-158.
doi: 10.11896/jsjkx.211200175
[21] 南国君, 王敏, 都海波, 等. 基于改进Deeplabv3+模型的遥感影像地物语义分割方法研究[J]. 控制与决策, 2025, 40(2):423-431.
Nan G J, Wang M, Du H B, et al. The research on semantic segmentation of remote sensing image about ground objects based on improved Deeplabv3+ model[J]. Control and Decision, 2025, 40(2):423-431.
[22] Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. UNet++:A nest-ed U-Net architecture for medical image segmentation[J/OL]. 2018(2018-07-18).https://arxiv.org/abs/1807.10165v1.
[23] Sandler M, Howard A, Zhu M, et al. MobileNetV2:Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018:4510-4520.
[24] 张雨林, 蒋昌波, 隆院男, 等. 基于Sentinel-1A SAR的洞庭湖汛期水体面积动态变化监测研究[J]. 遥感技术与应用, 2024, 39(3):741-752.
doi: 10.11873/j.issn.1004-0323.2024.3.0741
Zhang Y L, Jiang C B, Long Y N, et al. Dynamic monitoring of water area in Dongting Lake during flood season based on sentinel-1A SAR data[J]. Remote Sensing Technology and Application, 2024, 39(3):741-752.
[25] 乔丹玉, 郑进辉, 鲁晗, 等. 面向不同环境背景的Landsat影像水体提取方法适用性研究[J]. 地球信息科学学报, 2021, 23(4):710-722.
doi: 10.12082/dqxxkx.2021.200312
Qiao D Y, Zheng J H, Lu H, et al. Application of water extraction methods from Landsat imagery for different environmental background[J]. Journal of Geo-Information Science, 2021, 23(4):710-722.
[26] 温泉, 李璐, 熊立, 等. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3):57-71.doi:10.6046/zrzyyg.2023106.
Wen Q, Li L, Xiong L, et al. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3):57-71.doi:10.6046/zrzyyg.2023106.
[27] Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy:Effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):276-292.
doi: 10.1109/36.134078
[28] 李文涛, 童鑫, 李冬瑞, 等. 亚米级宽幅卫星边缘视场影像的DSM生成研究[J]. 遥感信息, 2024, 39(2):61-69.
Li W T, Tong X, Li D R, et al. Production of DSM based on image located at edge of view of sub meter WFV satellite[J]. Remote Sensing Information, 2024, 39(2):61-69.
[29] Small C. The Landsat ETM+ spectral mixing space[J]. Remote Sensing of Environment, 2004, 93(1/2):1-17.
doi: 10.1016/j.rse.2004.06.007
[30] 谢文春, 李强峰, 李艳春, 等. 基于面向对象的吉林一号遥感影像湿地植被群落分类[J]. 林业资源管理, 2023(1):141-152.
Xie W C, Li Q F, Li Y C, et al. Object-oriented classification of wetland vegetation community in Jilin-1 remote sensing image[J]. Forest Resources Management, 2023(1):141-152.
[1] 夏兴生, 雷博洋, 窦春娟, 陈琼, 潘耀忠. 基于Sentinel-2A/B数据构建水体指数的波段优选[J]. 自然资源遥感, 2025, 37(6): 64-76.
[2] 文甜甜, 普运伟, 赵文翔. 一种融合上下文语义信息与边缘特征的海陆分割方法[J]. 自然资源遥感, 2025, 37(5): 62-72.
[3] 何晓军, 罗杰. 结合上下文与类别感知特征融合的高分遥感图像语义分割[J]. 自然资源遥感, 2025, 37(2): 1-10.
[4] 郑宗生, 高萌, 周文睆, 王政翰, 霍志俊, 张月维. 基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割[J]. 自然资源遥感, 2025, 37(2): 11-18.
[5] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[6] 刘晨晨, 葛小三, 武永斌, 余海坤, 张蓓蓓. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1): 31-37.
[7] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[8] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[9] 罗鑫, 王崇倡, 孙尚宇. 面向水体浅水区遥感识别的水体指数NMBWI研究[J]. 自然资源遥感, 2024, 36(4): 142-148.
[10] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[11] 李世琦, 姚国清. 基于CNN与SETR的特征融合滑坡体检测[J]. 自然资源遥感, 2024, 36(4): 158-164.
[12] 苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4): 210-217.
[13] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[14] 冯思维, 杨清华, 贾伟洁, 王梦飞, 刘蕾. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36(3): 41-56.
[15] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发