Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 235-242    DOI: 10.6046/zrzyyg.2020418
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
煤矿开采中SOM的遥感估算和时空动态分析
高文龙1(), 张圣微1,2,3(), 林汐1, 雒萌1, 任照怡1
1.内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
2.内蒙古自治区水资源保护与利用重点实验室,呼和浩特 010018
3.内蒙古自治区农牧业大数据研究与应用重点实验室,呼和浩特 010018
The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining
GAO Wenlong1(), ZHANG Shengwei1,2,3(), LIN Xi1, LUO Meng1, REN Zhaoyi1
1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Key Laboratory of Protection and Utilization of Water Resources of Inner Mongolia Atuonomous Region, Hohhot 010018, China
3. Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot 010018, China
全文: PDF(4831 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤是储存碳的最大潜在储层,土壤有机质(soil organic matter,SOM)含量则是影响土壤碳的关键驱动因素,因此,SOM是分析土壤碳储量变化的重要指标。了解煤矿开采过程中光谱对SOM含量最佳响应波段以及整体煤矿区的SOM时空动态格局变化情况,以位于陕蒙交界的典型煤矿区为研究区,利用实测SOM、近地高光谱反射率和卫星多光谱反射率线性回归分析,对研究区2019年6月1日、7月4日和9月21日SOM变化进行定量分析,同时监测井工矿(大海则、巴拉素、纳林河二号、营盘壕)及其所在流域周边的SOM变化情况。结果表明: 与实测SOM对比,近地高光谱反射率一阶微分变换的SOM反演效果最佳。通过对高光谱、多光谱特征波段提取以及SOM相关性分析,建立回归反演模型,验证精度结果表明,反演SOM预测值与SOM实测值相关性达到0.90; 研究区内土壤有机质含量呈东高西低态势,河流上、中、下游及河口处SOM逐渐降低。采矿前模拟SOM含量得到结果与采矿过程中遥感估算的SOM相比高5%,说明煤矿开采在一定程度影响SOM含量。证明线性回归SOM反演模型具有推广应用前景。上述结果将对研究区土壤资源和生态环境定量研究、管理以及可持续发展提供依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高文龙
张圣微
林汐
雒萌
任照怡
关键词 成像高光谱土壤有机质(SOM)煤矿土壤含水量高光谱遥感    
Abstract

Soil is the largest potential reservoir of carbon, and the content of soil organic matter (SOM) is the key influencing factor of soil carbon storage. Therefore, SOM is an important index in the analysis of the changes in soil carbon storage. This paper aims to understand the optimal response bands in spectra to the SOM content in the process of coal mining and the changes in the temporal-spatial dynamic patterns of the SOM in a whole coal mining area. Based on the linear regression analysis of measured SOM, near-earth hyperspectral reflectance, and satellite multispectral reflectance, the SOM changes in the study area on June 1, July 4, and September 21, 2019 were quantitatively analyzed, and the SOM changes in underground coal mines (named Dahaize, Balasu, Nalinhe 2, and Yingpanhao) and their surrounding river basins were monitored. The SOM inversion results obtained using the first-order differential transformation of the near-earth hyperspectral reflectance were the closest to the measured SOM. A regression inversion model was established based on the extracted hyperspectral and multispectral characteristic bands and their correlation with the SOM. As indicated by the precision verification results, the correlation between the values predicted through SOM reversion and measured SOM values reached 0.90. Meanwhile, the SOM content in the study area was high in the east and low in the west and it gradually decreased along the upper, middle, and lower reaches of rivers and estuaries. The SOM content obtained through pre-mining simulation was 5% higher than that acquired via remote sensing-based estimation, indicating that coal mining affects the SOM content to a certain extent. It is also proven that the linear regression model of SOM inversion has the prospect of wide application. The above results will provide bases for quantitative research, management, and sustainable development of soil resources and ecological environment in the study area.

Key wordshyperspectral images    soil organic matter(SOM)    coal mine    soil moisture content    hyperspectral remote sensing
收稿日期: 2020-12-24      出版日期: 2021-12-23
ZTFLH:  TP79S15  
基金资助:国家重点研发计划项目“大型煤矿和有色金属矿矿井水高效利用技术与示范”(2018YFC0406401);内蒙古自治区自然科学杰出青年培育基金“典型草原水文土壤植被对改变降雨及放牧的响应机理研究”(2019JQ06);内蒙古自治区科技计划项目“采煤驱动下西部典型矿区地质环境治理与生态修复关键技术研究与示范”(2020GG0076);中央引导地方科技发展资金项目“内蒙古不同草原类型下植物对土壤氮的获取策略研究”(2020ZY0008)
通讯作者: 张圣微
作者简介: 高文龙(1995-),男,硕士研究生,主要从事地学和生态水文遥感相关方面研究。Email: gao19950723@126.com
引用本文:   
高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020418      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/235
Fig.1  研究区概况及采样点位置
Fig.2  土壤有机质实测值与光谱相关性关系
样本
类型
样本
数/个
最小值
(Min)/
(g·kg-1)
最大值
(Max)/
(g·kg-1)
均值
(Mean)/
(g·kg-1)
标准差
(Sd)/
(g·kg-1)
变异
系数
(CV)/%
建模样本 30 0.14 4.66 1.96 1.29 0.66
验证样本 15 0.72 3.99 2.12 1.05 0.50
总体样本 45 0.14 4.66 2.01 1.21 0.60
Tab.1  土壤有机质含量基本统计特征
波段组合 回归方程 R2 RMSE
绿 Y=2.27 X绿+3.14 0.32 5.31
Y=1.42 X+4.72 0.46 4.39
近红 Y=1.38 X近红-4.83 0.70 4.24
绿+红+
近红
Y=0.08 X绿+0.19 X+0.18 X近红-1.9 0.82 2.03
Tab.2  线性回归比较
Fig.3  不同时间SOM的空间分布情况
Fig.4  土壤含水量对土壤有机质的影响
Fig.5  采矿前SOM反演
Fig.6  SOM反演精度评价
[1] Tian S Q, Wang L, Liu Y L, et al. Degradation of organic pollutants by ferrate/biochar:Enhanced formation of strong intermediate oxidative iron species[J]. Water Research, 2020,183,116054.
doi: 10.1016/j.watres.2020.116054
[2] Thomas G, Léa C, Yann Q, et al. Historical CO2 emissions from land use and land cover change and their uncertainty[J]. Biogeoscuences, 2020,17(15):4075-4101.
[3] Emily E, Oldfield S, et al. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth[J]. Ecological Applications, 2020,30(4):1-12.
[4] Cheng Q, Jia W, Hu G X, et al. Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium[J]. Environmental Pollution, 2020,265,114827.
doi: S0269-7491(20)30775-2 pmid: 32454382
[5] 程朋根, 吴剑, 李大军, 等. 土壤有机质高光谱遥感和地统计定量预测[J]. 农业工程学报, 2009,25(3):142-147.
Cheng P G, Wu J, Li D J, et al. Quantitative prediction of soil organic matter content using hyper spectral remote senging and geo-statistics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(3):142-147.
[6] Sparling G P, Wheeler D, Vesely E T, et al. What is soil organic matter worth?[J]. Journal of Environmental Quality, 2006,35(2):548-557.
pmid: 16510699
[7] 夏楠, 丁建丽, 等. 基于多光谱数据的荒漠矿区土壤有机质估算模型[J]. 农业工程学报, 2016,32(6):263-267.
Xia N, Ding J L, et al. Estimation model of soil organic matter in desert mining area based on multispectral image data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(6):263-267.
[8] Qiao X X, Wang C, Feng M C, et al. Hyperspectral estimation of soil organic matter based on different spectral preprocessing techniques[J]. Spectroscopy Letters, 2017,50(3):156-163.
doi: 10.1080/00387010.2017.1297958
[9] 刘明杰, 徐卓揆, 郜允兵, 等. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020,22(9):1799-1813.
doi: 10.12082/dqxxkx.2020.190441
Liu M J, Xu Z K, Gao Y B, et al. Estimating soil organic matter based on machine learning under sparse sample[J]. Journal of Geo-information Science, 2020,22(9):1799-1813.
[10] Paula A, Luis E, Sáenz de M, et al. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands[J]. Science of the Total Environment, 2015, 506-507:380-390.
doi: 10.1016/j.scitotenv.2014.11.039
[11] Ana M G, Leopoldo G. Land-use/cover change effects and carbon controls on volcanic soil profiles in highland temperate forests[J]. Geoderma, 2012(170):390-402.
[12] 贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
He J L, Han C S, Wei R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land and Resources, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
[13] 聂哲, 李秀芬, 吕家欣, 等. 东北典型黑土区表层土壤有机质含量高光谱反演研究[J]. 土壤通报, 2019,50(6):1285-1293.
Nie Z, Li X F, Lyu J X, et al. Hyperspectral retrieval of surface soil organic matter content in a typical black soil region of northeast china[J]. Chinese Jourmal of Soil Science, 2019,50(6):1285-1293.
[14] Lin C, Zhu A X, Wang Z F, et al. The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3[J]. International Journal of Applied Earth Observations and Geoinformation, 2020,89, 1102094.
[15] Galvao L S, Vitorello I. Variability of laboratory measured soil lines of soils from southheastern Brazil[J]. Remote Sensing of Environment, 1998(63):166-181.
[16] 亚森江·喀哈尔, 杨胜天, 尼格拉·塔什甫拉提, 等. 基于分数阶微分优化光谱指数的土壤电导率高光谱估算[J]. 生态学报, 2019,39(19):7237-7248.
Yasenjiang K, Yang S T, Nigara T, et al. Hyperspectral estimation of soil electrical conductivity based on fractional order differentially optimised spectral indices[J]. Acta Ecologica Sinica, 2019,39(19):7237-7248.
[17] 徐彬彬, 段昌达. 南二坡光谱反射率特性与有机质含量的相关性[J]. 科学通报, 1980(6):282-284.
Xu B B, Duan C D. Correlation between spectral reflectance and organic matter content of the Nanerpo[J]. Science Bulletin, 1980(6):282-284.
[18] 叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017,48(3):164-172.
Ye Q, Jiang X Q, Li X C, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3):164-172.
[19] Zhu M K, Kong F L, Li Y, et al. Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland[J]. Environmental Research, 2020,187,109659.
doi: 10.1016/j.envres.2020.109659
[20] Hong Y S, Chen S C, Zhang Y, et al. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy:Effects of two-dimensional correlation coefficient and extreme learning machine[J]. Science of the Total Environment, 2018,644:1232-1243.
doi: 10.1016/j.scitotenv.2018.06.319
[21] Al-Abbas A H, Swain P H, Baumgarder M F, et al. Relating organic matter and clay content to the multi-spectral radiance of soils[J]. Soil Science, 1972,114(6):477-485.
doi: 10.1097/00010694-197212000-00011
[22] 国佳欣, 朱青, 赵小敏, 等. 不同土地利用类型下土壤有机碳含量的高光谱反演[J]. 应用生态学报, 2020,31(3):863-871.
Guo J X, Zhu Q, Zhao X M, et al. Hyper-spectral inversion of soil organic carbon content under different land use typrs[J]. Chinese Journal of Applied Ecology, 2020,31(3):863-871.
[23] 毛丽, 苏志珠, 王国玲, 等. 毛乌素沙地不同土地利用类型的土壤粒度及有机质特征[J]. 干旱区研究, 2019,36(3):589-598.
Mao L, Su Z Z, Wang G L, et al. Soil particle size and organic matter content of different land use types in the Mu Us sandland[J]. Arid Zone Research, 2019,36(3):589-598.
[24] Lin L X, Gao L P, Xue F C, et al. Hyperspectral analysis of total nitrogen in soil using a synchronized decoloring fuzzy measured value method[J]. Soil & Tillage Research, 2020,202:104658.
[25] 亚森江·喀哈尔, 茹克亚·萨吾提, 尼加提·卡斯木, 等. 优化光谱指数的露天煤矿区土壤重金属含量估算[J]. 光谱学与光谱分析, 2019,39(8):2486-2494.
Yasenjiang K, Rukeya S, Nijat K, et al. Estimation of heavy metal contents in soil around open pit coal mine area based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2019,39(8):2486-2494.
doi: 10.3964/j.issn.1000-0593(2019)08-2486-09
[26] Tatiana F R, Luiza C, et al. Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type[J]. Pedosphere, 2020,30(3):336-345.
doi: 10.1016/S1002-0160(20)60013-3
[27] 侯增福, 刘镕源, 闫柏琨, 等. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019,31(1):33-41.doi: 10.6046/gtzyyg.2019.01.05.
doi: 10.6046/gtzyyg.2019.01.05
Hou Z F, Liu R Y, Yan B K, et al. Hyperspectral imagery anomaly detection based on band selection and learning dictionary[J]. Remote Sensing for Land and Resources, 2019,31(1):33-41.doi: 10.6046/gtzyyg.2019.01.05.
doi: 10.6046/gtzyyg.2019.01.05
[28] Patel S S, Ramachandran P. A comparison of machine learning techniques for modeling river flow time series:The case of upper Cauvery River Basin[J]. Water Resources Management, 2015,29(2):589-602.
doi: 10.1007/s11269-014-0705-0
[29] 郑昭佩, 刘新作. 土壤质量及其评价[J]. 应用生态学报, 2003,14(1):131-134.
Zheng Z P, Liu X Z, et al. Soil quality and its evaluation[J]. Chinese Journal of Applied Ecology, 2003,14(1):131-134.
[30] Moura-Bueno J M, Dalmolin R S D, Caten A T, et al. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions[J]. Geoderma, 2019,337:565-581.
doi: 10.1016/j.geoderma.2018.10.015
[31] Gomez C, Adeline K, Bacha S, et al. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data,from multispectral to hyperspectral scenarios[J]. Remote Sensing of Environment, 2018,204:18-30.
doi: 10.1016/j.rse.2017.10.047
[32] 张敏, 刘爽, 刘勇, 等. 黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征[J]. 水土保持学报, 2019,33(3):115-120,128.
Zhang M, Liu S, Liu Y, et al. Soil moisture variation characteristics of different land use types in the moderate slope sandy area of loess hilly region[J]. Journal of Soil and Water Conservation, 2019,33(3):115-120,128.
[33] Wang D, He N P, Wang Q, et al. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains,Northeast China[J]. Pedosphere, 2016,26(3):399-407.
doi: 10.1016/S1002-0160(15)60052-2
[34] Peng F, Katherine M H, Guan K Y, et al. Estimating photosynthetic traits from reflectance spectra:Asynjournal of spectral indices,numerical inversion,and partialleast square regression[J]. Plant,Cell & Environment, 2020,43(5):1103-1330.
[35] 吴志远, 彭苏萍, 杜文凤, 等. 干旱地区煤层开采对地表土壤理化性质的影响[J]. 水土保持研究, 2019,26(5):75-80.
Wu Z Y, Peng S P, Du W F, et al. Effect of coal mining on surface soil physicochemical of sandy land in the arid region[J]. Journal of Soil and Water Conservation, 2019,26(5):75-80.
[36] Kaczmarek‐Derda W, Helgheim M, Netland J, et al. Impacts of soil moisture level and organic matter content on growth of two Juncus species and Poa pratensis grown under acid soil conditions[J]. Weed Research, 2019,59(6):490-500.
doi: 10.1111/wre.12387
[37] 毕银丽, 胡晶晶, 刘京. 煤矿微生物复垦区灌木林下土壤养分的空间异质性[J]. 煤炭学报, 2020,45(8):2908-2917.
Bi Y L, Hu J J, Liu J. Spatial heterogeneity of soil nutrients under shrubbery in micro-reclamation demonstration base in coal mine areas of China[J]. Journal of China Coal Society, 2020,45(8):2908-2917.
[38] 刘军, 张成福, 孙冬杰, 等. 草原区煤矿开采对周边旱作农田土壤养分和重金属的影响[J]. 生态与农村环境学报, 2019,35(7):909-916.
Liu J, Zhang C F, Sun D J, et al. The impact of coal mining on soil nutrients and heavy metals in rainfed farmland in arid grassland area[J]. Journal of Ecology and Rural Environment, 2019,35(7):909-916.
[39] Yang F, Huang J P, Zhou C L, et al. Taklimakan desert carbon-sink decreases under climate change[J]. Science Bulletin, 2020,65(6):431-433.
doi: 10.1016/j.scib.2019.12.022
[1] 郭艺, 甘甫平, 闫柏琨, 白娟, 邢乃琛, 刘琪. 1948—2021年河南省土壤含水量时空分布特征及其影响因素研究[J]. 自然资源遥感, 2023, 35(3): 241-252.
[2] 刘小杨, 汪洁, 东启亮, 周英杰, 李丽, 于航. 基于3S的安徽省煤矿采空塌陷区现状与治理对策研究[J]. 自然资源遥感, 2023, 35(1): 155-160.
[3] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[4] 晏红波, 韦晚秋, 卢献健, 杨志高, 黎振宝. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2): 1-9.
[5] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[6] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[7] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[8] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[9] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[10] 高俊华, 刘莎莎, 杨金中, 赵明鹏, 刘欣悦, 邹联学. 基于遥感的露天煤矿集中区地质环境灰关联评价——以准格尔煤田为例[J]. 国土资源遥感, 2021, 33(1): 183-190.
[11] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[12] 王瑞军, 张春雷, 孙永彬, 王诜, 董双发, 王永军, 闫柏琨. 高光谱在甘肃红山多金属找矿模型构建中的应用[J]. 国土资源遥感, 2020, 32(3): 222-231.
[13] 张东辉, 赵英俊, 秦凯. 典型目标地面光谱信息系统设计与实现[J]. 国土资源遥感, 2018, 30(4): 206-211.
[14] 李军, 董恒, 王祥, 游林. 基于最优插值的土壤含水量遥感反演缺失数据插补[J]. 国土资源遥感, 2018, 30(2): 45-52.
[15] 张文, 任燕, 马晓琳, 胡艺杰. 基于综合干旱指数的淮河流域土壤含水量反演[J]. 国土资源遥感, 2018, 30(2): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发