Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 222-230    DOI: 10.6046/zrzyyg.2021446
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
乌兰布和沙漠东北缘生态承载力时空动态分析
戚曌1,2(), 谭炳香1,2(), 曹晓明3, 于航1,2, 沈明潭1,2
1.中国林业科学研究院资源信息研究所,北京 100091
2.国家林业和草原局林业遥感与信息技术重点实验室,北京 100091
3.中国林业科学研究院荒漠化研究所,北京 100091
Spatial-temporal dynamics of ecological carrying capacity of the northeastern margin of the Ulan Buh Desert
QI Zhao1,2(), TAN Bingxiang1,2(), CAO Xiaoming3, YU Hang1,2, SHEN Mingtan1,2
1. Research Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
2. Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Beijing 100091, China
3. Research Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
全文: PDF(4582 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

生态承载力是衡量生态系统稳定性的重要指标之一,其时空变化分析有助于了解地区生态环境变化趋势,对生态环境的治理与恢复评价、环境整体的可持续发展研究以及国土资源优化也具有全面的参考价值。以乌兰布和沙漠东北缘的干旱半干旱地区为研究区,以Landsat系列遥感数据为数据源,基于地区的实际生态状况,构建生态承载力综合指标评价体系,进而获得地区生态承载力时空分布及演变格局,并从降雨、温度以及土地利用变化的角度对生态承载力的变化进行驱动分析。结果表明,1990—2020年乌兰布和沙漠东北缘区域的生态承载力整体呈现先减少后增加的趋势,其中黄河以北的灌区向西南方向的荒漠化区域不断扩张,较高生态承载力的面积占比大幅度增加,高生态承载力面积降低,受土地开发利用的影响较大,其次是温度和降雨,而黄河以南的荒漠化区域以中生态承载力为主,在2010年之前大面积转为较低生态承载力,到2020年又恢复到中生态承载力,受温度影响较大,其次是降雨和灌草植被覆盖状况的变化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戚曌
谭炳香
曹晓明
于航
沈明潭
关键词 干旱半干旱地区生态承载力综合评价指标驱动分析    
Abstract

Ecological carrying capacity is an important indicator used to measure the stability of an ecosystem. The spatial-temporal change analysis of the ecological carrying capacity can help understand the changing trend of a regional ecological environment and serve as a comprehensive reference for the evaluation of ecological management and restoration, research on the overall sustainable development of an environment, and the optimization of land resources. Targeting the arid and semi-arid regions at the northeastern margin of the Ulan Buh Desert, this study constructed a comprehensive index evaluation system of ecological carrying capacity based on the actual ecological conditions of the regions and Landsat remote sensing images as the data source. Then, this study determined the spatial-temporal distribution and evolution pattern of regional ecological carrying capacity and made a driver analysis of the change in the ecological carrying capacity from the angles of rainfall, temperature, and land use changes. The results show that the ecological carrying capacity of the northeastern margin of the Ulan Buh Desert showed a first decreasing and then increasing trend from 1990 to 2020. The irrigated areas north of the Yellow River continued to expand to the desertification areas in the southwest. As a result, the percentage of the area with relatively high ecological carrying capacity increased greatly, while the area with high ecological carrying capacity decreased. The change in the ecological carrying capacity of the irrigated areas was mainly affected by land development and utilization, followed by temperature and rainfall. In contrast, the ecological carrying capacity of the desertification areas south of the Yellow River was mainly at a moderate level, which was shifted to a low level in large areas before 2010 and was restored to a moderate level in 2020. The change in the ecological carrying capacity of the desertification areas was greatly affected by temperature, followed by rainfall and changes in shrub and grass vegetation cover.

Key wordsarid and semi-arid region    ecological carrying capacity    comprehensive evaluation index    driver analysis
收稿日期: 2021-12-20      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于功能性植被指数的荒漠植被时空分异格局及机理研究”(41971398)
通讯作者: 谭炳香(1966-),女,研究员,研究方向为林业遥感技术与应用。Email: tan@ifrit.ac.cn
作者简介: 戚曌(1996-),女,硕士研究生,研究方向为林业遥感应用。Email: qizhao1104@163.com
引用本文:   
戚曌, 谭炳香, 曹晓明, 于航, 沈明潭. 乌兰布和沙漠东北缘生态承载力时空动态分析[J]. 自然资源遥感, 2023, 35(1): 222-230.
QI Zhao, TAN Bingxiang, CAO Xiaoming, YU Hang, SHEN Mingtan. Spatial-temporal dynamics of ecological carrying capacity of the northeastern margin of the Ulan Buh Desert. Remote Sensing for Natural Resources, 2023, 35(1): 222-230.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021446      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/222
Fig.1  研究区2020年影像以及地理位置分布
(B3(R), B2(G), B1(B)波段合成影像)
数据类型 单位 数据来源
净初级生产力 g·C/m2 1990年的数据来自于“国家地球系统科学数据中心”提供的全球5 km 8 d总、净初级生产力产品; 2000年、2010年和2020年的数据来自于MOD17A3数据,空间分辨率为500 m,时间分辨率为1 a
潜在蒸散发 0.1 mm 1990年、2000年和2010年的数据来自于“国家地球系统科学数据中心”提供的中国1 km逐月潜在蒸散发数据集; 2020年的数据来自于MOD16A2数据,空间分辨率为500 m,时间分辨率为8 d
温度 0.1 ℃ 1990年、2000年、2010年和2020年的数据均来自于“国家地球系统科学数据中心”提供的中国1 km 逐月平均气温数据集
降雨 0.1 mm 1990年、2000年、2010年和2020年的数据均来自于“国家地球系统科学数据中心”提供的中国1 km 逐月降水量数据集
土地利用数据 1990年、2000年、2010年和2020年的土地利用数据均基于Landsat遥感影像数据采用监督分类的方法获取
Tab.1  各数据类型的获取来源以及信息
等级编号 等级名称 生态承载力取值范围
1 低生态承载力 [0,0.2)
2 较低生态承载力 [0.2,0.4)
3 中生态承载力 [0.4,0.6)
4 较高生态承载力 [0.6,0.8)
5 高生态承载力 [0.8,1.0]
Tab.2  生态承载力等级划分标准
Fig.2  长时间序列生态承载力驱动因素分析框架
Fig.3  研究区4个时期生态承载力各等级空间分布
Fig.4  4个时期具有不同级别生态承载力的区域百分比
Fig.5  研究区生态承载力变化趋势
变化趋
势类型
显著
下降
不显著
下降
稳定
不变
不显著
上升
显著
上升
面积占比 7.09 0.02 81.89 0.19 10.81
Tab.3  研究区不同变化趋势的面积占比
Fig.6  生态承载力驱动因素空间分布
驱动因
素组合
无显著
变化区
降雨 温度 其他 降雨
和温
降雨
和其
温度
和其
降雨、
温度和
其他
面积
占比
81.89 7.61 4.61 2.77 0.31 0.99 1.07 0.75
Tab.4  各种驱动因素面积统计
[1] 曲修齐, 刘淼, 李春林, 等. 生态承载力评估方法研究进展[J]. 气象与环境学报, 2019, 35(4):113-119.
Qu X Q, Liu M, Li C L, et al. Research progress in ecological carrying capacity assessment methods[J]. Journal of Meteorology and Environment, 2019, 35(4):113-119.
[2] Du W P, Yan H M, Yang Y Z, et al. Evaluation methods and research trends for ecological carrying capacity[J]. Journal of Resources and Ecology, 2018, 9(2):115-124.
doi: 10.5814/j.issn.1674-764x.2018.02.001
[3] He Y F, Xie H L. Exploring the spatiotemporal changes of ecological carrying capacity for regional sustainable development based on GIS:A case study of Nanchang City[J]. Technological Forecasting and Social Change, 2019, 148(c):119720.
[4] Frank J W, Ottfried D, Gunnar L, et al. Evaluation of spatio-temporal patterns of remotely sensed evapotranspiration to infer information about hydrological behaviour in a data-scarce region[J]. Water, 2017, 9(5):333-358.
doi: 10.3390/w9050333
[5] Tang X G, Ma M G, Ding Z, et al. Remotely monitoring ecosystem water use efficiency of grassland and cropland in China’s arid and semi-arid regions with MODIS data[J]. Remote Sensing, 2017, 9(6):616-633.
doi: 10.3390/rs9060616
[6] 曹智, 闵庆文, 刘某承, 等. 基于生态系统服务的生态承载力:概念、内涵与评估模型及应用[J]. 自然资源学报, 2015, 30(1):1-11.
Cao Z, Min Q W, Liu M C, et al. Ecological carrying capacity based on ecosystem services:Concept,connotation,evaluation model and application[J]. Journal of Natural Resources, 2015, 30(1):1-11.
[7] 王民哲. 内蒙古河套灌区盐碱化耕地改良措施及建议[J]. 中国水利, 2019, 15:40-41.
Wang M Z. Measures and suggestions for improving salinized cultivated land in Hetao Irrigation District of Inner Mongolia[J]. China Water Resources, 2019, 15:40-41.
[8] 闫晋阳, 马向阳, 王晨霞. 河套灌区国管水利工程保护与管理问题分析及对策建议[J]. 中国水利, 2021, 15:58-59.
Yan J Y, Ma X Y, Wang C X. Problems of protection and management of state-managed water conservancy projects in Hetao Irrigation District and countermeasures[J]. China Water Resources, 2021, 15:58-59.
[9] 杨超. 磴口县荒漠化治理产业业态及地区承载力研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
Yang C. Research on desertification control industry forms and regional carrying capacity in Dengkou County[D]. Hehot: Inner Mongolia Agricultural University, 2020.
[10] 张景波, 郝玉光, 刘明虎, 等. 干旱农牧区内蒙古磴口县生态足迹及生态承载力动态变化[J]. 中国农学通报, 2011, 27(32):168-174.
Zhang J B, Hao Y G, Liu M H, et al. Dynamic changes of ecological footprint and ecological carrying capacity in Dengkou County,Inner Mongolia[J]. Chinese Agricultural Science Bulletin, 2011, 27(32):168-174.
[11] 刘明虎, 张景波, 张瑞, 等. 磴口县2007年水资源生态承载力分析[J]. 中国农学通报, 2011, 27(17):255-259.
Liu M H, Zhang J B, Zhang R, et al. Ecological carrying capacity of water resources in Dengkou County in 2007[J]. Chinese Agricultural Science Bulletin, 2011, 27(17):255-259.
[12] Yang H F, Mu S J, Li J L. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang,China[J]. Catena, 2014, 115:85-95.
doi: 10.1016/j.catena.2013.11.020
[13] 张启斌. 乌兰布和沙漠东北缘生态网络构建与优化研究[D]. 北京: 北京林业大学, 2019.
Zhang Q B. Construction and optimization of ecological network in the northeastern edge of Ulan Buh Desert[D]. Beijing: Beijing Forestry University, 2019.
[14] 边凯, 高君亮, 辛智鸣, 等. 乌兰布和沙漠东北缘绿洲防护林体系防风阻沙能力研究[J]. 首都师范大学学报, 2021, 42(1):48-53.
Bian K, Gao J L, Xin Z M, et al. Research on wind and sand resistance ability of oasis shelterbelt system in the northeastern edge of Ulan Buh Desert[J]. Journal of Capital Normal University, 2021, 42(1):48-53.
[15] 罗凤敏, 高君亮, 辛智鸣, 等. 乌兰布和沙漠东北缘防护林内外沙尘暴低空结构特征[J]. 干旱区研究, 2019, 36(4):1032-1040.
Luo F M, Gao J L, Xin Z M, et al. Low-altitude structure characteristics of sandstorms inside and outside the shelterbelt in the northeastern edge of Ulan Buh Desert[J]. Arid Zone Research, 2019, 36(4):1032-1040.
[16] 黄雅茹, 马迎宾, 郝玉光, 等. 乌兰布和沙漠东北缘白刺群落与油蒿群落土壤养分特征分析[J]. 山东农业大学学报, 2019, 50(4):559-565.
Huang Y R, Ma Y B, Hao Y G, et al. Analysis of soil nutrient characteristics of Nitraria community and Artemisia ordosica community in the northeastern edge of Ulan Buh Desert[J]. Journal of Shandong Agricultural University, 2019, 50(4):559-565.
[17] Zhen Z J, Chen S B, Yin T G, et al. Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas[J]. Sensors (Basel,Switzerland), 2021, 21(6):2115.
doi: 10.3390/s21062115
[18] Wu Z H, Lei S G, Bian Z F, et al. Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region[J]. Environmental Earth Sciences, 2019, 78(6):232.
doi: 10.1007/s12665-019-8111-9
[19] Liu Q S, Liu G H, Huan C. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series[J]. Journal of Arid Land, 2018, 10(1):12-26.
doi: 10.1007/s40333-017-0109-0
[20] 赖声裕智. 四川省城市人力资源产业的综合评价研究——基于主成分分析和聚类分析[J]. 武汉职业技术学院学报, 2017, 16(5):65-70.
Lai S Y Z. Study on the comprehensive evaluation of urban human resources industry in Sichuan Province:Based on principal component analysis and cluster analysis[J]. Journal of Wuhan Polytechnic, 2017, 16(5):65-70.
[21] 俞立平, 宋夏云, 王作功. 评价型指标标准化与评价方法对学术评价影响研究——以TOPSIS评价方法为例[J]. 情报理论与实践, 2020, 43(2):15-20.
Yu L P, Song X Y, Wang Z G. Research on the impact of evaluation index standardization and evaluation methods on academic evaluation:Taking TOPSIS evaluation method as an example[J]. Information Theory and Practice, 2020, 43(2):15-20.
[22] 俞立平. 指标标准化方法对科技评价的影响机制研究——以学术期刊评价为例[J]. 情报理论与实践, 2020, 43(12):54-62.
Yu L P. Study on the impact mechanism of index standardization method on science and technology evaluation:Taking the evaluation of academic journals as an example[J]. Information Theory and Practice, 2020, 43(12):54-62.
[23] 李佩武, 李贵才, 张金花, 等. 城市生态安全的多种评价模型及应用[J]. 地理研究, 2009, 28(2):293-302.
Li P W, Li G C, Zhang J H, et al. Several assessment models and application analysis of urban ecological security[J]. Geographical Research, 2009, 28(2):293-302.
doi: 10.11821/yj2009020003
[24] Tang W, Chen A Z, Li D M, et al. The application of combination weighting approach in multiple attribute decision making[J]. International Conference on Machine Learning and Cybernetics, 2009, 5:2724-2728.
[25] Karayalcin I I. The analytic hierarchy process:Planning,priority setting,resource allocation[J]. North-Holland, 1982, 9(1):97-98.
[26] 楚存坤, 孙思琴, 韩丰谈. 基于层次分析法的高校图书馆学科服务评价模式[J]. 大学图书馆学报, 2014, 32(6):86-90.
Chu C K, Sun S Q, Han F T. The subject service evaluation model of academic libraries based on the analytic hierarchy process[J]. Journal of Academic Libraries, 2014, 32(6):86-90.
[27] 林秀春, 刘睿. 莆田市近海海域生态环境承载力评价[J]. 莆田学院学报, 2019, 26(2):94-99.
Lin X C, Liu R. Evaluation of the carrying capacity of the ecological environment in the coastal waters of Putian City[J]. Journal of Putian University, 2019, 26(2):94-99.
[28] Wu X L, Hu F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method[J]. Ecological Indicators, 2020, 113:106243.
doi: 10.1016/j.ecolind.2020.106243
[29] Wang Z F, He X Q, Zhang C, et al. Evaluation of geological and eco-logical bearing capacity and spatial pattern along Du-wen road based on the analytic hierarchy process (AHP) and the technique for order of preference by similarity to an ideal solution (TOPSIS) method[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):237.
doi: 10.3390/ijgi9040237
[30] 张鹏. 基于主成分分析的综合评价研究[D]. 南京: 南京理工大学, 2004.
Zhang P. Research on comprehensive evaluation based on principal component analysis[D]. Nanjing: Nanjing University of Science and Technology, 2004.
[31] 李奇, 胡世雄, 王争磊. 基于主成分分析的山西省各城市经济综合实力评价[J]. 对外经贸, 2021(4):80-83.
Li Q, Hu S X, Wang Z L. Evaluation of comprehensive economic strength of cities in Shanxi Province based on principal component analysis[J]. Foreign Economics and Trade, 2021(4):80-83.
[32] 杨宇. 多指标综合评价中赋权方法评析[J]. 统计与决策, 2006(13):17-19.
Yang Y. Review and analysis of weighting methods in multi-index comprehensive evaluation[J]. Statistics and Decision, 2006(13):17-19.
[33] Wu X L, Hu F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method[J]. Ecological Indicators, 2020, 113:106243.
doi: 10.1016/j.ecolind.2020.106243
[34] 陈水蓉. 趋势分析在水质管理中的应用研究[D]. 天津: 天津师范大学, 2012.
Chen S R. Research on the application of trend analysis in water quality management[D]. Tianjin: Tianjin Normal University, 2012.
[35] 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019, 38(7):1820-1832.
doi: 10.11821/dlyj020190088
Sun Y J, Liu X F, Ren Z Y, et al. Multi-scale drought characteristics and influencing factors of the Loess Plateau from 1960 to 2016[J]. Geographical Research, 2019, 38(7):1820-1832.
[36] 汪攀, 刘毅敏. Sen’s斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6):454-457,472.
Wang P, Liu Y M. Sen’s slope estimation and Mann-Kendall method in equipment operation trend analysis application[J]. Journal of Wuhan University of Science and Technology, 2014, 37(6):454-457,472.
[37] Heike H, Hilary B. Trends in extreme precipitation events in the indus river basin and flooding in Pakistan[J]. Atmosphere-Ocean, 2014, 52(1):77-91.
doi: 10.1080/07055900.2013.859124
[38] 汪攀. 时间序列趋势分析及其在预防性维修中的应用[D]. 武汉: 武汉科技大学, 2015.
Wang P. Time series trend analysis and its application in preventive maintenance[D]. Wuhan: Wuhan University of Science and Technology, 2015.
[39] Tali P A, Bhat M M, Lone F A. Seasonal spatio-temporal variability in temperature over North Kashmir Himalayas using Sen Slope and Mann-Kendall test[J]. Journal of Climatology and Weather Forecasting, 2021, 9(5):288-298.
[40] 邱临静, 郑粉莉, 尹润生. 1952—2008年延河流域降水与径流的变化趋势分析[J]. 水土保持学报, 2011, 25(3):49-53.
Qiu L J, Zheng F L, Yin R S. Analysis of the change trend of precipitation and runoff in the Yanhe River Basin from 1952 to 2008[J]. Journal of Soil and Water Conservation, 2011, 25(3):49-53.
[41] 介科伟. 基于Pearson相关性分析的高校学生恋爱模型[J]. 首都师范大学学报, 2017, 38(6):8-13.
Jie K W. College student love model based on pearson correlation analysis[J]. Journal of Capital Normal University, 2017, 38(6):8-13.
[42] 樊敏伟, 宋崎, 王冰. 采用数字序列相关性分析法研究灯盏花素的不同含量测定方法[J]. 中国实验方剂学杂志, 2008(8):10-12.
Fan M W, Song Q, Wang B. Determination of breviscapine by digital sequence correlation analysis[J]. Chinese Journal of Experimental Formulae, 2008(8):10-12.
[1] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[2] 冯晓刚, 赵毅, 李萌, 周在辉, 李凤霞, 王园, 杨永佺. 城市河道及周临用地对地表热环境的影响研究[J]. 自然资源遥感, 2023, 35(3): 264-273.
[3] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[4] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[5] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[6] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[7] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[8] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[9] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[10] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[11] 阳煜瑾, 杨帆, 徐祯妮, 李祝. 洞庭湖区生态服务-经济发展时空协调分析与优化[J]. 自然资源遥感, 2023, 35(3): 190-200.
[12] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[13] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[14] 娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229.
[15] 周石松, 汤玉奇, 程宇翔, 邹滨, 冯徽徽. 郴州市郴江河流域水质与土地利用关联的空间异质性分析[J]. 自然资源遥感, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发