Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 167-175    DOI: 10.6046/zrzyyg.2022093
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于弱监督鲁棒性自编码的高光谱异常检测
张国建1(), 刘胜震2(), 孙英君1, 俞凯杰3, 刘丽娜4
1.山东建筑大学测绘地理信息学院,济南 250101
2.自然资源部第一大地测量队,西安 710054
3.浙江中测新图地理信息技术有限公司,湖州 313200
4.宁波市鄞州区测绘院,宁波 315041
Hyperspectral anomaly detection based on the weakly supervised robust autoencoder
ZHANG Guojian1(), LIU Shengzhen2(), SUN Yingjun1, YU Kaijie3, LIU Lina4
1. College of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
2. First Geodetic Survey Team, Ministry of Natural Resources, Xi’an 710054, China
3. Zhejiang Zhongcexintu Geographic Information Technology Co., Huzhou 313200, China
4. Ningbo Yinzhou District Surveying and Mapping Institute, Ningbo 315041, China
全文: PDF(4969 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高光谱异常检测因其以无监督方式检测目标的能力而受到特别关注,自动编码器及其变体可以自动提取深层特征,还可以检测异常目标。由于训练集中存在异常,自动编码器泛化性较强,从而降低了从背景中区分异常的能力。为解决上述问题,该文提出一种基于弱监督鲁棒性自编码的异常探测算法。首先提出了一种显著类别搜索策略,采用基于概率的类别阈值来标记粗样本,为网络弱监督学习做准备; 同时,构建一个具有l2,1范数与异常-背景光谱距离共同约束的鲁棒性自编码网络框架,该框架在训练期间对噪声和异常具有鲁棒性; 最后,采用所有样本得到的重构误差检测异常目标。在4个高光谱数据集上进行实验,结果表明,与其他先进的异常检测算法相比,所提算法具有更好的检测性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国建
刘胜震
孙英君
俞凯杰
刘丽娜
关键词 高光谱图像异常检测显著类别搜索鲁棒性AE    
Abstract

Hyperspectral anomaly detection has received particular attention due to its unsupervised detection of targets. Moreover, autoencoder (AE), together with its variants, can automatically extract deep features and detect anomalous targets. However, AE is highly generalizable due to the existence of anomalies in the training set, thus suffering a reduced ability to distinguish anomalies from the background. This study proposed an anomaly detection algorithm based on the weakly supervised robust AE (WSRAE). First, this study developed a salient category search strategy and used probability-based category thresholds to label coarse samples in order to make preparation for network-based weakly supervised learning. Moreover, this study constructed a robust AE framework constrained jointly by l2,1 norm and anomaly-background spectral distances. This framework was robust with regard to noise and anomalies during training. Finally, this study detected anomalous targets based on the reconstruction errors obtained from all samples. Experiments on four hyperspectral datasets show that the WSRAE algorithm has greater detection performance than other state-of-the-art anomaly detection algorithms.

Key wordshyperspectral image    anomaly detection    salient category search    robust AE
收稿日期: 2022-03-21      出版日期: 2023-07-07
ZTFLH:  TP79  
通讯作者: 刘胜震(1987-),男,工程师,主要从事测绘方面的研究。Email: szliu1987@126.com
作者简介: 张国建(1989-),男,讲师,主要从事摄影测量与遥感技术方面的研究。Email: 494088845@qq.com
引用本文:   
张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022093      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/167
Fig.1  WSRAE算法结构
Fig.2  4个高光谱数据集的伪彩色图像和对应的地物真值图


消融方案
Urban Gulfport San Diego-1 San Diego-2
(Pd,Pf) (Pf,τ) (Pd,Pf) (Pf,τ) (Pd,Pf) (Pf,τ) (Pd,Pf) (Pf,τ)
AE(l2) 0.977 0 0.034 2 0.969 0 0.020 3 0.959 8 0.027 3 0.946 7 0.038 2
WSAE(l2) 0.980 5 0.025 5 0.974 5 0.032 5 0.980 5 0.019 6 0.979 0 0.013 4
AE(l2,1) 0.977 5 0.024 8 0.984 2 0.018 5 0.979 7 0.014 5 0.989 5 0.025 1
WSAE(l2,1) 0.985 4 0.019 2 0.982 8 0.013 5 0.982 5 0.025 2 0.974 0 0.015 7
AE(ABSD) 0.984 1 0.020 1 0.982 1 0.017 4 0.979 8 0.014 9 0.986 4 0.018 5
WSAE(ABSD) 0.986 6 0.016 6 0.987 0 0.016 5 0.980 4 0.012 2 0.986 3 0.013 9
RAE 0.988 2 0.165 4 0.988 5 0.012 4 0.981 6 0.012 1 0.989 4 0.012 2
WSRAE 0.997 7 0.018 5 0.989 1 0.010 5 0.984 6 0.010 1 0.991 4 0.010 4
Tab.1  4组数据集中消融研究的AUC值
Tab.2  4类数据集不同异常检测算法结果对比
Fig.3  4组数据集中各异常检测算法的ROC曲线对比


检测算法
Urban Gulfport San Diego-1 San Diego-2
( P d , P f) ( P f , τ) ( P d , P f) ( P f , τ) ( P d , P f) ( P f , τ) ( P d , P f) ( P f , τ)
GRX 0.984 8 0.0344 0.952 6 0.024 8 0.911 1 0.040 6 0.940 3 0.058 9
CRD 0.982 9 0.0454 0.821 9 0.054 2 0.971 5 0.051 5 0.919 0 0.063 7
LSMAD 0.989 7 0.0190 0.939 5 0.024 6 0.975 6 0.020 1 0.965 3 0.029 1
FrFE 0.968 7 0.0162 0.894 1 0.049 2 0.953 3 0.002 4 0.962 2 0.021 4
SC_AAE 0.934 8 0.0307 0.893 0 0.024 5 0.861 7 0.019 6 0.890 5 0.028 3
MemAE 0.997 4 0.0337 0.961 6 0.037 9 0.969 7 0.047 0 0.971 3 0.048 7
WSRAE 0.997 7 0.0185 0.986 2 0.015 2 0.9846 0.005 4 0.976 3 0.018 5
Tab.3  4组数据集中各异常检测算法的AUC值
算法 Urban Gulfport San Diego-1 San Diego-2
GRX 0.468 0.445 0.911 0.326
CRD 98.217 45.826 74.654 94.225
LSMAD 26.784 21.941 19.261 25.635
FrFE 20.751 17.462 22.026 17.844
SC_AAE 3.123 5.794 4.145 7.912
MemAE 5.490 5.457 5.404 5.473
WSRAE 2.364 2.455 2.248 2.461
Tab.4  异常检测算法的平均计算时间
[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5):689-707.
Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707.
[2] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090.
Zhang B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.
[3] 成宝芝. 高光谱图像异常目标检测算法研究与进展[J]. 国土资源遥感, 2014, 26(3):1-7.doi:10.6046/gtzyyg.2014.03.01.
doi: 10.6046/gtzyyg.2014.03.01
Cheng B Z. Study and progress of anomaly target detection in hyperspectral imagery[J]. Remote Sensing for Land and Resources, 2014, 26(3):1-7.doi:10.6046/gtzyyg.2014.03.01.
doi: 10.6046/gtzyyg.2014.03.01
[4] 侯增福, 刘镕源, 闫柏琨, 等. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019, 31(1),33-41.doi:10.6046/gtzyyg.2019.01.05.
doi: 10.6046/gtzyyg.2019.01.05
Hou Z F, Liu R Y, Yan B K, et al. Hyperspectral imagery anomaly detection based on band selection and learning dictionary[J]. Remote Sensing for Land and Resources, 2019, 31(1),33-41.doi:10.6046/gtzyyg.2019.01.05.
doi: 10.6046/gtzyyg.2019.01.05
[5] Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1990, 38(10):1760-1770.
doi: 10.1109/29.60107
[6] Kwon H, Nasrabad N M. Kernel RX-algorithm:A nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):388-397.
doi: 10.1109/TGRS.2004.841487
[7] Guo Q, Zhang B, Ran Q, et al. Weighted-RXD and linear filter-based RXD:Improving background statistics estimation for anomaly detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2351-2366.
doi: 10.1109/JSTARS.4609443
[8] Du B, Zhang L. Random-selection-based anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote sensing, 2010, 49(5):1578-1589.
doi: 10.1109/TGRS.2010.2081677
[9] Li W, Du Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3):1463-1474.
doi: 10.1109/TGRS.2014.2343955
[10] 刘万军, 武小杰, 曲海成, 等. 改进协同表示的高光谱图像异常检测算法[J]. 计算机应用研究, 2018 (12):68.
Liu W J, Wu X J, Qu H C, et al. Improved collaborative representation for hyperspectral imagery anomaly detection algorithm[J]. Application Research of Computers, 2018 (12):68.
[11] Zhang Y, Du B, Zhang L, et al. A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(3):1376-1389.
doi: 10.1109/TGRS.2015.2479299
[12] Tao R, Zhao X, Li W, et al. Hyperspectral anomaly detection by fractional Fourier entropy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12):4920-4929.
doi: 10.1109/JSTARS.2019.2940278
[13] Xie W, Liu B, Li Y, et al. Autoencoder and adversarial-learning-based semisupervised background estimation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8):5416-5427.
doi: 10.1109/TGRS.36
[14] 薛白, 王懿哲, 刘书含, 等. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1):61-66.doi:10.6046/zrzyyg.2021122.
doi: 10.6046/zrzyyg.2021122
Xue B, Wang Y Z, Liu S H, et al. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Land and Resources, 2022, 34(1):61-66.doi:10.6046/zrzyyg.2021122.
doi: 10.6046/zrzyyg.2021122
[15] 韩彦岭, 崔鹏霞, 杨树瑚, 等. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2):11-19.doi:10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
Han Y L, Cui P X, Yang S H, et al. Classification of hyperspectral images based on feature fusion of residual network[J]. Remote Sensing for Land and Resources, 2021, 33(2):11-19.doi:10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
[16] Xie W, Lei J, Liu B, et al. Spectral constraint adversarial autoencoders approach to feature representation in hyperspectral anomaly detection[J]. Neural Networks, 2019, 119:222-234.
doi: S0893-6080(19)30229-1 pmid: 31472289
[17] Lu X, Zhang W, Huang J. Exploiting embedding manifold of autoencoders for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(3):1527-1537.
doi: 10.1109/TGRS.36
[18] Zhao C, Zhang L. Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection[J]. Infrared Physics & Technology, 2018, 92:166-176.
[19] Parimala M, Lopez D, Senthilkumar N C. A survey on density based clustering algorithms for mining large spatial databases[J]. International Journal of Advanced Science and Technology, 2011, 31(1):59-66.
[20] Ma Y, Li C, Mei X, et al. Robust sparse hyperspectral unmixing with l2,1 norm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(3):1227-1239.
doi: 10.1109/TGRS.2016.2616161
[21] Gong D, Liu L, Le V, et al. Memorizing normality to detect anomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019:1705-1714.
[1] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[2] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[3] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[4] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[5] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[6] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[7] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[8] 曲海成, 郭月, 王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[9] 涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[10] 刘万军, 李天慧, 曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[11] 江帆, 张晨洁. 利用NSCT和空间聚类的高光谱图像全局异常检测[J]. 国土资源遥感, 2017, 29(2): 53-59.
[12] 张媛, 张杰林, 赵学胜, 袁博. 基于峰值权重的岩心高光谱矿化蚀变信息提取[J]. 国土资源遥感, 2015, 27(2): 154-159.
[13] 张转, 马玉, 蔡伟. 基于模糊贴近度和改进Prim算法的高光谱图像波段分组排序[J]. 国土资源遥感, 2014, 26(4): 8-13.
[14] 成宝芝. 高光谱图像异常目标检测算法研究与进展[J]. 国土资源遥感, 2014, 26(3): 1-7.
[15] 吕凤华, 舒宁, 陶建斌, 付晶. 基于可变步长的光谱响应曲线分形维[J]. 国土资源遥感, 2011, 23(1): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发