Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 188-197    DOI: 10.6046/zrzyyg.2023057
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
九寨沟生物圈保护区大场景植被健康遥感精细监测与诠析——以长海为例
高昇1,2(), 陈富龙1,3(), 时丕龙1,3, 周伟1,3, 朱猛1,3, 骆艳松1,2, 杨青霞4, 王琴4
1.中国科学院空天信息创新研究院,北京 100094
2.中国科学院大学,北京 100049
3.可持续发展大数据国际研究中心,北京 100094
4.九寨沟风景名胜区管理局,九寨沟 623402
Fine-scale remote sensing monitoring and interpretation of large-scene vegetation health in the Jiuzhai Valley biosphere reserve: A case study of the Changhai pilot zone
GAO Sheng1,2(), CHEN Fulong1,3(), SHI Pilong1,3, ZHOU Wei1,3, ZHU Meng1,3, LUO Yansong1,2, YANG Qingxia4, WANG Qin4
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
4. Jiuzhaigou Valley Scenic Area Administration, Jiuzhaigou 623402, China
全文: PDF(11371 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在自然过程、地质灾害和人为扰动的交织影响下,生物圈保护区植被健康风险提升,如何从复杂大场景精准提取与识别植被健康信息面临技术挑战。文章充分利用遥感技术宏观、客观与定量的优势,选取九寨沟生物圈保护区长海试验区为例,提出了一种集特征提取和随机森林的大场景植被健康遥感精细监测方法,实现了典型生物圈保护区不健康树木的信息提取与目标识别。结果表明: 应用光谱特征和纹理特征相结合的随机森林分类方法,在高分辨率遥感影像中可以精细提取森林中零散分布的不健康树木; 红绿指数、归一化植被指数、红边波段、红光波段相关性和修正的土壤调整植被指数是遥感植被健康信息提取的典型特征; 长海实验区植被健康状况总体较好,不健康树木占比0.23%,同时地质灾害对不健康树木空间分布有正向作用。研究不仅为九寨沟生物圈保护区植被健康诊断提供了第一手科学数据,而且对我国其他生物圈保护区的生态安全遥感监测具有推广价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高昇
陈富龙
时丕龙
周伟
朱猛
骆艳松
杨青霞
王琴
关键词 遥感植被健康特征提取特征重要性WorldView-2    
Abstract

Under the intertwined effects of natural processes, geological disasters, and human disturbances, the health risks of vegetation in biosphere reserves have increased. Accurately extracting and identifying vegetation health information from complex large scenes faces technical challenges. This study investigated the Changhai pilot zone of the Jiuzhai Valley biosphere reserve by leveraging the macro, objective, and quantitative advantages of remote sensing technology. It proposed a fine-scale remote sensing monitoring method integrated with feature extraction and random forest for large-scene vegetation health, achieving the information extraction and target identification of unhealthy trees in typical biosphere reserves. The results show that: ① The random forest classification method combined with spectral and texture features can accurately extract unhealthy trees scattered in forests from high-resolution remote sensing images; ② The red-green ratio index, normalized difference vegetation index, correlation between red-edge and red bands, and corrected soil-adjusted vegetation index constitute typical features for extracting vegetation health information from remote sensing images; ③ The Changhai pilot zone exhibits a generally fair vegetation health status, with unhealthy trees accounting for 0.23%, and geological disasters exert positive effects on the spatial distribution of unhealthy trees. This study provides primary scientific data for vegetation health diagnosis of the Jiuzhai Valley biosphere reserve while showing generalization value for the remote sensing monitoring of ecological security in other biosphere reserves of China.

Key wordsremote sensing    vegetation health    feature extraction    feature importance    WorldView-2
收稿日期: 2023-03-08      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:九寨沟风景名胜区管理局项目“基于遥感技术的森林植被分类与健康研究”(2021KJCY0486)
通讯作者: 陈富龙(1980-),男,研究员,研究方向为文化遗产遥感智能感知与可持续保护。Email: chenfl@aircas.ac.cn
作者简介: 高 昇(1999-),男,硕士研究生,研究方向为植被光学遥感。Email: gaosheng21@mails.ucas.edu.cn
引用本文:   
高昇, 陈富龙, 时丕龙, 周伟, 朱猛, 骆艳松, 杨青霞, 王琴. 九寨沟生物圈保护区大场景植被健康遥感精细监测与诠析——以长海为例[J]. 自然资源遥感, 2024, 36(2): 188-197.
GAO Sheng, CHEN Fulong, SHI Pilong, ZHOU Wei, ZHU Meng, LUO Yansong, YANG Qingxia, WANG Qin. Fine-scale remote sensing monitoring and interpretation of large-scene vegetation health in the Jiuzhai Valley biosphere reserve: A case study of the Changhai pilot zone. Remote Sensing for Natural Resources, 2024, 36(2): 188-197.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023057      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/188
Fig.1  研究区位置
Fig.2  健康和不健康云杉与冷杉的光谱曲线对比
Fig.3  卫星影像和无人机影像呈现的病害树木
Fig.4  植被健康监测与分析技术流程
类型 光谱指数 计算公式 描述
归一化植被
指数
NDVI57 NDVI57 = ( N I R 1 - R e d ) / ( N I R 1 + R e d ) 传统用来识别植被的指数,与叶绿素浓度相关
NDVI58 NDVI58 = ( N I R 2 - R e d ) / ( N I R 2 + R e d )
红绿指数 RGI34 RGI34 = Y e l l o w / G r e e n 凸显叶片变黄趋势
RGI35 RGI35 = R e d / G r e e n
RGI45 RGI45 = R e d / Y e l l o w
修正的土壤调节植被指数 MSAVI57 MSAVI57 = ( 2 N I R 1 + 1 ) - ( 2 N I R 1 + 1 ) 2 - 8 ( N I R 1 - R e d )   2 弱化土壤对植被的影响
MSAVI58 MSAVI58 = ( 2 N I R 2 + 1 ) - ( 2 N I R 2 + 1 ) 2 - 8 ( N I R 2 - R e d )   2
绿色归一化植被指数 GNDVI37 GNDVI37 = ( N I R 1 - G r e e n ) / ( N I R 1 + G r e e n ) 与叶绿素浓度相关,且对于叶绿素a浓度相比于NDVI更为敏感
GNDVI38 GNDVI38 = ( N I R 2 - G r e e n ) / ( N I R 2 + G r e e n )
归一化差异红边指数 NDRE67 NDRE67 = ( N I R 1 - R e d E d g e ) / ( N I R 1 + R e d E d g e ) 反映植被受胁迫时早期的红边异常
NDRE68 NDRE68 = ( N I R 2 - R e d E d g e ) / ( N I R 2 + R e d E d g e )
Tab.1  WorldView-2计算的光谱指数
纹理度量 计算公式 描述
均值MEA M E A = i , j = 0 N - 1 i p ( i , j ) 灰度共生矩阵窗口的灰度均值,反映图像的明暗深浅
相异性DIS D I S = i , j = 0 N - 1 p ( i , j ) i - j 反映图像灰度的相异性
角二阶矩 A S M A S M = i , j = 0 N - 1 p ( i , j ) 2 反映图像灰度分布均匀程度和纹理粗细度
对比度CON C O N = i , j = 0 N - 1 p ( i , j ) ( i - j ) 2 反映图像的清晰度和纹理的强度深浅
相关性COR C O R = i , j = 0 N - 1 p ( i , j ) ( i - u i ) ( j - u j ) σ i 2 σ j 2   度量图像的灰度级在行或列方向上的相似程度
反差VAR V A R = i , j = 0 N - 1 p ( i , j ) ( i - u i ) 2 反映图像的局部差异性
同质性HOM H O M = i , j = 0 N - 1 p ( i , j ) 1 + ( i - j ) 2 反映图像纹理的同质性
ENT E N T = i , j = 0 N - 1 p ( i , j ) ( - l n p ( i , j ) ) 图像包含信息量的随机性度量
Tab.2  灰度共生矩阵计算的纹路度量
指标 8波段 8波段+植
被指数
8波段+灰度
共生矩阵
8波段+植被指
数+灰度共生矩阵
准确率 53.8 77.8 84.4 92.7
召回率 11.3 22.6 43.5 61.3
F1分数 18.7 35.0 57.4 73.8
Tab.3  不同特征加入分类器的识别精度
Fig.5  不同灰度共生矩阵窗口大小下的识别精度
Fig.6  聚类树状图
距离阈值 特征
个数
准确
率/%
召回
率/%
F1分
数/%
相对分类
能力/%
2.00 4 80.0 45.2 57.7 62.5
1.30 6 91.7 70.9 80.0 86.7
0.75 8 94.0 75.8 83.9 90.1
0.55 12 92.7 82.3 87.2 94.4
0.45 15 92.9 85.5 89.1 96.5
0.25 21 96.4 85.5 90.5 98.0
0.20 24 96.4 87.1 91.5 99.1
Tab.4  新特征集的相对分类能力
Fig.7  置换重要性大于0.02的特征
Fig.8  不健康树木识别结果
Fig.9  不同高程不健康树木发生概率
Fig.10  3种不同类型的不健康树木成因
不健康树木成因 林区类型 不健康树木发生概率/%
人为扰动 人工林 0.17
自然过程 天然林 0.21
地质灾害 天然林 0.40
Tab.5  3种成因的不健康树木发生概率
[1] Batisse M. Action plan for biosphere reserves[J]. Environmental Conservation, 1985, 12(1):17-27.
[2] Ishwaran N, Persic A, Tri N H. Concept and practice:The case of UNESCO biosphere reserves[J]. International Journal of Environment and Sustainable Development, 2008, 7(2):118-131.
[3] Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586:720-723.
[4] 陶欢, 李存军, 程成, 等. 松材线虫病变色松树遥感监测研究进展[J]. 林业科学研究, 2020, 33(3):172-183.
Tao H, Li C J, Cheng C, et al. Progress in remote sensing monitoring for pine wilt disease induced tree mortality:A review[J]. Forest Research, 2020, 33(3):172-183.
[5] Dash J P, Watt M S, Pearse G D, et al. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:1-14.
[6] 黄文江, 张竞成, 师越, 等. 作物病虫害遥感监测与预测研究进展[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1):30-43.
Huang W J, Zhang J C, Shi Y, et al. Progress in monitoring and forecasting of crop pests and diseases by remote sensing[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2018, 10(1):30-43.
[7] Meddens A J H, Hicke J A, Vierling L A, et al. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery[J]. Remote Sensing of Environment, 2013, 132:49-58.
[8] Wang H, Zhao Y, Pu R, et al. Mapping Robinia pseudoacacia forest health conditions by using combined spectral,spatial,and textural information extracted from IKONOS imagery and random forest classifier[J]. Remote Sensing, 2015, 7(7):9020-9044.
[9] Waser L T, Küchler M, Jütte K, et al. Evaluating the potential of WorldView-2 data to classify tree species and different levels of ash mortality[J]. Remote Sensing, 2014, 6(5):4515-4545.
[10] Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level[J]. Remote Sensing, 2015, 7(11):15467-15493.
[11] Yu R, Luo Y, Zhou Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.
[12] Zhou Q, Yu L, Zhang X, et al. Fusion of UAV hyperspectral imaging and LiDAR for the early detection of EAB stress in ash and a new EAB detection index—NDVI(776,678)[J]. Remote Sensing, 2022, 14(10):2428.
[13] 薛娟, 俞琳锋, 林起楠, 等. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018, 30(4):108-114.doi: 10.6046/gtzyyg.2018.04.17.
Xue J, Yu L F, Lin Q N, et al. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land and Resources, 2018, 30(4):108-114.doi: 10.6046/gtzyyg.2018.04.17.
[14] He Y N, Chen G, Potter C, et al. Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality[J]. Remote Sensing of Environment, 2019, 231:111238.
[15] Wulder M A, Dymond C C, White J C, et al. Surveying mountain pine beetle damage of forests:A review of remote sensing opportunities[J]. Forest Ecology and Management, 2006, 221(1-3):27-41.
[16] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351(1):309.
[17] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3):289-298.
[18] Wójtowicz A, Piekarczyk J, Czernecki B, et al. A random forest model for the classification of wheat and rye leaf rust symptoms based on pure spectra at leaf scale[J]. Journal of Photochemistry and Photobiology B:Biology, 2021, 223:112278.
[19] Eitel J U, Vierling L A, Litvak M E, et al. Broadband,red-edge information from satellites improves early stress detection in a New Mexico conifer woodland[J]. Remote Sensing of Environment, 2011, 115(12):3640-3646.
[20] Chen G, He Y N, Santis A D, et al. Assessing the impact of emerging forest disease on wildfire using Landsat and KOMPSAT-2 data[J]. Remote Sensing of Environment, 2017, 195:218-229.
[21] Wang H, Zhong Y, Pu R, et al. Dynamic analysis of Robinia pseudoacacia forest health levels from 1995 to 2013 in the Yellow River Delta,China using multitemporal Landsat imagery[J]. International Journal of Remote Sensing, 2018, 39(12):4232-4253.
[22] Ferreira M P, Wagner F H, Aragão L E O C, et al. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149:119-131.
[23] Eugenio F C, Silva S D P, Fantinel R A, et al. Remotely piloted aircraft systems to identify pests and diseases in forest species:The global state of the art and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 10(1):320-333.
[24] Dash J P, Pearse G D, Watt M S. UAV multispectral imagery can complement satellite data for monitoring forest health[J]. Remote Sensing, 2018, 10(8):1216.
[25] Liakos K G, Busato P, Moshou D, et al. Machine learning in agriculture:A review[J]. Sensors, 2018, 18(8):2674.
[26] Park H G, Yun J P, Kim M Y, et al. Multichannel object detection for detecting suspected trees with pine wilt disease using multispectral drone imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:8350-8358.
[27] Hu G S, Wang T X, Wan M Z, et al. UAV remote sensing monitoring of pine forest diseases based on improved Mask R-CNN[J]. International Journal of Remote Sensing, 2022, 43(4):1274-1305.
[28] Han Z M, Hu W J, Peng S L, et al. Detection of standing dead trees after pine wilt disease outbreak with airborne remote sensing imagery by multi-scale spatial attention deep learning and Gaussian kernel approach[J]. Remote Sensing, 2022, 14(13):3075.
[29] Mantas V, Fonseca L, Baltazar E, et al. Detection of tree decline (Pinus pinaster Aiton) in European forests using Sentinel-2 data[J]. Remote Sensing, 2022, 14(9):2028.
[30] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973, 6:610-621.
[31] Janitza S, Strobl C, Boulesteix A L. An AUC-based permutation variable importance measure for random forests[J]. BMC Bioinformatics, 2013, 14:119.
doi: 10.1186/1471-2105-14-119 pmid: 23560875
[1] 和海霞, 李博. 青海大通“8·18”山洪灾害特征及风险分析[J]. 自然资源遥感, 2024, 36(2): 135-141.
[2] 刘稼丰, 张文凯, 杜晓敏, 冀欣阳, 杨金中, 范景辉, 孙禧勇, 佟晶. 1976—2020年黄河入海口滩区水体演变过程及淹没风险识别[J]. 自然资源遥感, 2024, 36(2): 151-159.
[3] 宋奇, 高小红, 宋玉婷, 黎巧丽, 陈真, 李润祥, 张昊, 才桑洁. 基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例[J]. 自然资源遥感, 2024, 36(2): 160-172.
[4] 邢宇, 王静雅, 杨金中, 陈栋, 杜晓敏, 郭靖凯, 宋丽聪. 全国废弃露天矿山采矿用地分布状况与存在问题[J]. 自然资源遥感, 2024, 36(2): 21-26.
[5] 李威洋, 史海静, 聂玮廷, 杨鑫源. 基于地表参数变化的延河流域地表温度时空演变分析[J]. 自然资源遥感, 2024, 36(2): 229-238.
[6] 马晓雪, 焦润成, 曹颖, 南赟, 王晟宇, 郭学飞, 赵丹凝, 闫驰, 倪璇. 重大工程建设中地质灾害综合遥感监测技术方法应用——以北京2022冬奥会延庆赛区为例[J]. 自然资源遥感, 2024, 36(2): 248-256.
[7] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[8] 赵彬如, 牛思文, 王力彦, 杨晓彤, 焦红波, 王子珂. 面向海岛海岸带区域的高分遥感影像智能化色彩增强方法[J]. 自然资源遥感, 2024, 36(2): 70-79.
[9] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[10] 林聃, 李秋岑, 陈志奎, 钟芳明, 李丽方. 多标签遥感图像分类研究现状与展望[J]. 自然资源遥感, 2024, 36(2): 10-20.
[11] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[12] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[13] 陆妍玲, 黄娅琦, 周俊芬, 王杰, 韦晶闪. 基于夜光遥感数据的广西县域农村多维脱贫分析[J]. 自然资源遥感, 2024, 36(1): 169-178.
[14] 李世杰, 冯徽徽, 王珍, 杨卓琳, 王姝. 2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素[J]. 自然资源遥感, 2024, 36(1): 179-188.
[15] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发