Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 160-172    DOI: 10.6046/zrzyyg.2023005
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例
宋奇1,2,3(), 高小红1,2,3,4(), 宋玉婷1,2,3, 黎巧丽1,2,3, 陈真1,2,3, 李润祥1,2,3, 张昊1,2,3, 才桑洁1,2,3
1.青海师范大学地理科学学院,西宁 810008
2.青海省自然地理与环境过程重点实验室,西宁 810008
3.青藏高原地表过程与生态保育教育部重点实验室,西宁 810008
4.高原科学与可持续发展研究院,西宁 810008
Estimation of soil organic carbon content in farmland based on UAV hyperspectral images: A case study of farmland in the Huangshui River basin
SONG Qi1,2,3(), GAO Xiaohong1,2,3,4(), SONG Yuting1,2,3, LI Qiaoli1,2,3, CHEN Zhen1,2,3, LI Runxiang1,2,3, ZHANG Hao1,2,3, CAI Sangjie1,2,3
1. School of Geographical Sciences, Qinghai Normal University, Xining 810008, China
2. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Xining 810008, China
3. MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological, Xining 810008, China
4. Academy of Plateau Science and Sustainability, Xining 810008, China
全文: PDF(17204 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

快速、准确地估算农田土壤有机碳含量并对其进行空间分布制图,有利于土壤精细化管理和智慧农业的发展。该文以青海湟水流域3个典型农田区为例,在研究区内同步采集296个土壤样品和相应的野外原位光谱,使用无人机搭载高光谱相机进行影像获取,并对土壤样品进行室内光谱采集和有机碳含量测定。对光谱反射率进行7种不同形式的变换,通过相关性分析从中筛选出主要特征波段,利用多元线性回归、偏最小二乘回归和随机森林3种方法分别对室内光谱、野外原位光谱和无人机光谱进行建模,对比各模型的精度。用光谱直接转换法对无人机光谱进行校正,使用校正后的无人机光谱最优模型进行建模,模型代入无人机高光谱影像进行有机碳含量制图,最后对满足制图精度要求的农田区进行分析和讨论。结果表明: ①除对无人机高光谱进行对数变换后的多元线性回归不能估算有机碳外(相对分析误差为1.375),实验室光谱、野外原位光谱及无人机高光谱的原始光谱及所有转换方法均能对有机碳进行估算,决定系数R2为0.562~0.942,均方根误差为1.713~5.211,相对分析误差为1.445~4.182; ②在所有光谱变换方法中,多元散射校正+一阶微分变换与有机碳含量的相关性最高,特征波段分别为429~449 nm, 498~527 nm, 830~861 nm和869 nm; ③在所有建模结果中,随机森林模型精度最高,其次为偏最小二乘模型,多元线性回归模型精度最低,校正后的无人机光谱建模精度均有所提高; ④3个农田区的反演精度均满足制图要求,R2均在0.88以上。其中,A农田区有机碳含量均值最高,为28.88 g·kg-1,整体空间分布均匀; B农田区均值为13.52 g·kg-1,整体分布呈现出较强的空间差异性; C农田区有机碳含量均值最低,为8.54 g·kg-1,高值和低值的分化明显。本研究可为无人机高光谱遥感技术应用于田间尺度的土壤有机碳含量估算和数字制图提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋奇
高小红
宋玉婷
黎巧丽
陈真
李润祥
张昊
才桑洁
关键词 无人机高光谱遥感土壤有机碳光谱特征选择光谱校正    
Abstract

Rapid and accurate estimation and spatial distribution mapping of soil organic carbon content in farmland facilitate the refined management of soil and the development of smart agriculture. This study investigated three typical farmland areas in the Huangshui River basin of Qinghai Province using 296 soil samples and corresponding field in situ spectra collected synchronously. The unmanned aerial vehicle (UAV) with a hyperspectral camera was employed for image acquisition, and the soil samples were tested for spectral acquisition and organic carbon content in the laboratory. The spectral reflectance was transformed into seven different forms, and the main characteristic bands were screened out through correlation analysis. Using multiple linear regression, partial least squares regression, and random forest, the experimental spectra, field in situ spectra, and UAV spectra were modeled, with the accuracy of the models compared. The UAV spectra were corrected using the direct spectral conversion method, and the optimal model of corrected UAV spectra was used for modeling. The model was substituted into the UAV hyperspectral images for the organic carbon content mapping. Finally, the farmland areas meeting the mapping accuracy requirements were analyzed and discussed. The results show that: ① The multiple linear regression after logarithmic transformation of UAV hyperspectra failed to estimate the organic carbon content, with a relative percent deviation (RPD) of 1.375. Except for it, the experimental spectra, field in situ spectra, and original spectra of UAV hyperspectra as well as all conversion methods could estimate the organic carbon content, with coefficients of determination (R2) ranging from 0.562 to 0.942, root mean square errors (RMSEs) ranging from 1.713 to 5.211. and RPDs between 1.445 and 4.182; ② Among all spectral transformation methods, multiple scatter correction and first-order differential transformation exhibited the highest correlation with the organic carbon content, presenting characteristic bands of 429~449 nm, 498~527 nm, 830~861 nm, and 869 nm; ③ As revealed by the modeling results, the random forest model manifested the highest accuracy, followed by the partial least squares model and the multiple linear regression model in turn. The corrected UAV spectra yielded improved modeling accuracy; ④ The inversion accuracy of the three farmland areas all met the mapping requirements, with R2 values above 0.88. Farmland A exhibited the highest average organic carbon content of 28.88 g·kg-1 and an overall uniform spatial distribution. Farmland B manifested average organic carbon content of 13.52 g·kg-1 and a significantly varying spatial distribution. Farmland C displayed the lowest average organic carbon content of 8.54 g·kg-1 and significant differentiation between high and low values. This study can be referenced for the application of UAV hyperspectral remote sensing technology to the field-scale estimation and digital mapping of soil organic carbon content.

Key wordsunmanned aerial vehicle (UAV)    hyperspectral remote sensing    soil organic carbon    spectral feature selection    spectrum correction
收稿日期: 2023-01-03      出版日期: 2024-06-14
ZTFLH:  TP79  
通讯作者: 高小红(1963-),女,博士生导师,教授,研究方向为遥感应用与地理空间数据分析。Email: xiaohonggao226@163.com
作者简介: 宋 奇(1996-),男,博士研究生,研究方向为遥感应用与地理空间数据分析。Email: tarimsongqi@163.com
引用本文:   
宋奇, 高小红, 宋玉婷, 黎巧丽, 陈真, 李润祥, 张昊, 才桑洁. 基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例[J]. 自然资源遥感, 2024, 36(2): 160-172.
SONG Qi, GAO Xiaohong, SONG Yuting, LI Qiaoli, CHEN Zhen, LI Runxiang, ZHANG Hao, CAI Sangjie. Estimation of soil organic carbon content in farmland based on UAV hyperspectral images: A case study of farmland in the Huangshui River basin. Remote Sensing for Natural Resources, 2024, 36(2): 160-172.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023005      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/160
Fig.1  研究区位置及采样点分布
Fig.2  无人机高光谱系统
Fig.3  处理后的高光谱影像
采样区域 样本数 最大值/(g·kg-1) 最小值/(g·kg-1) 平均值/(g·kg-1) 标准差/(g·kg-1) 变异系数/% 偏度 峰度
A区 66 33.35 22.88 28.38 2.84 10.01 0.13 -1.32
B区 126 17.48 11.13 13.75 1.28 9.31 0.54 0.39
C区 104 14.36 4.79 8.63 1.51 17.50 0.49 1.51
Tab.1  SOC描述性统计
光谱数学变换 公式 描述
1/R 1 / R i 式中: i为波长; Δ i为波长间隔; R i为波长 i的光谱反射率; mb分别为各样品光谱与平均光谱进行一元线性回归后得到的相对偏移系数和平移量; R i + Δ i为与 R i间隔 Δ i的光谱反射率; R ' i为波长 i的一阶微分光谱; R ' i + Δ i为与 R i间隔 Δ i的一阶微分光谱; A为所有样品的原始光谱在各个波长点处求平均值所得到的平均光谱矢量; A i为1×p维矩阵,表示单个样品的光谱矢量; R i , M S C为第 i个样品的多元散射校正结果; R ˉ i为标准光谱; i=1, 2, , n ; n为样品数
lgR lg R i
FDR ( R i + Δ i - R i ) / Δ i
SDR ( R ' i + Δ i - R ' i ) / Δ i
MSC R i - = i = 1 n R i n
A i = m i R i - + b i
R i , M S C = ( A i - b i ) m i
MSC+FDR

MSC+SDR
R i , M S C+
( R i + Δ i - R i ) / Δ i R i , M S C+
( R ' i + Δ i - R ' i ) / Δ i
Tab.2  光谱数学变换
Fig.4  各等级的SOC含量光谱曲线
Fig.5  SOC和不同光谱变换形式的相关性分析
光谱反射率
及各种光谱
变换方法
主要特征
波段/nm
特征
波段
数量
最大相
关性波
段/nm
最大相
关系数
R 400~708 78 400 -0.86*
1/R 400~598 51 412 0.85*
lgR 400~602 52 400 -0.86*
FDR 799~990 50 847 0.88*
SDR 412, 449, 523, 540, 565, 590, 644, 653, 666, 713, 756, 782, 786, 804, 852, 887~949 31 786 0.44*
MSC 400~437, 581~821 71 606 -0.89*
MSC+FDR 429~449, 498~527, 830~861, 869 23 847 0.91*
MSC+SDR 408~412, 421, 429, 433, 449, 523, 540, 556~565, 573~581, 594, 704, 786, 830, 920~949 26 565 0.56*
Tab.3  不同光谱变换下的有机碳特征响应波段
Fig.6  室内光谱、野外原位光谱和无人机光谱的不同模型精度对比
Fig.7  室内光谱、野外原位光谱、无人机光谱和校正后的无人机光谱对比
Fig.8  校正后的无人机光谱数据的各模型预测值与实测值散点图
Fig.9  SOC含量分级制图结果
Fig.10  各农田区采样点实测值与预测值对比结果
农田 等级Ⅰ 等级Ⅱ 等级Ⅲ 等级Ⅳ 等级Ⅴ 有机碳含量/(g·kg-1)
面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/% 均值 最小 最大
A区 16 532 82.66 2 694 13.47 576 2.88 128 0.64 70 0.35 28.88 5.18 33.66
B区 376 0.94 2 976 7.44 33 676 84.19 2 608 6.52 364 0.91 13.52 5.58 23.39
C区 265 0.79 312 0.93 2117 6.3 28 705 85.43 2 201 6.55 8.54 4.59 23.31
Tab.4  各农田区的有机碳含量及各等级面积的百分比
[1] Li Y W, Duan X W, Li Y, et al. Interactive effects of land use and soil erosion on soil organic carbon in the dry-hot valley region of southern China[J]. Catena, 2021, 201(155):105187.
[2] Meng X, Bao Y, Liu J, et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 89:102111.
[3] Ge X Y, Ding J L, Teng D X, et al. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112:102969.
[4] Moura-Bueno J M, Dalmolin R S D, Caten A T, et al. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions[J]. Geoderma, 2019, 337:565-581.
doi: 10.1016/j.geoderma.2018.10.015
[5] Soliman A, Heck R, Brenning A, et al. Remote sensing of soil moisture in vineyards using airborne and ground-based thermal inertia data[J]. Remote Sensing, 2013, 5(8):3729-3748.
[6] Hu J, Peng J, Zhou Y, et al. Quantitative estimation of soil salinity using UAV-borne hyperspectral and satellite multispectral images[J]. Remote Sensing, 2019, 11(7):736.
[7] Sankey J B, Sankey T T, Li J, et al. Quantifying plant-soil-nutrient dynamics in rangelands:Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry,and ground-based LiDAR-digital photography in a shrub-encroached desert grassland[J]. Remote Sensing of Environment, 2021, 253:112223.
[8] Ge X Y, Ding J L, Jin X L, et al. Estimating agricultural soil moisture content through UAV-based hyperspectral images in the arid region[J]. Remote Sensing, 2021, 13(8):1562.
[9] 王敬哲, 丁建丽, 马轩凯, 等. 基于光谱指数的绿洲农田土壤含水率无人机高光谱检测[J]. 农业机械学报, 2018, 49(11):164-172.
Wang J Z, Ding J L, Ma X K, et al. Detection of soil moisture content based on UAV-derived hyperspectral imagery and spectral index in oasis cropland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11):164-172.
[10] 祝元丽, 王冬艳, 张鹤, 等. 采用无人机载高分辨率光谱仪反演土壤有机碳含量[J]. 农业工程学报, 2021, 37(6):66-72.
Zhu Y L, Wang D Y, Zhang H, et al. Soil organic carbon content retrieved by UAV-borne high resolution spectrometer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6):66-72.
[11] 葛翔宇, 丁建丽, 王敬哲, 等. 一种基于无人机高光谱影像的土壤墒情检测新方法[J]. 光谱学与光谱分析, 2020, 40(2):602-609.
Ge X Y, Ding J L, Wang J Z, et al. A new method for predicting soil moisture based on UAV hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2020, 40(2):602-609.
[12] 洪永胜, 于雷, 耿雷, 等. 应用DS算法消除室内几何测试条件对土壤高光谱数据波动性的影响[J]. 华中师范大学学报(自然科学版), 2016, 50(2):303-308.
Hong Y S, Yu L, Geng L, et al. Using direct standardization algorithm to eliminate the effect of laboratory geometric parameters on soil hyperspectral data fluctuate characteristic[J]. Journal of Central China Normal University (Natural sciences), 2016, 50(2):303-308.
[13] Hu Y N, Gao X H, Shen Z Y, et al. Estimation of soil organic matter content based on combined laboratory and field spectroscopy in highland agricultural areas:A case study on the Qinghai-Tibet plateau,China[J]. Fresenius Environmental Bulletin, 2022, 31(1):1561-1575.
[14] Ji W J, Shi Z, Huang J Y, et al. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy[J]. PLoS One, 2014, 9(8):0105708.
[15] 胡亚男, 高小红, 申振宇, 等. 基于野外实测Vis-NIR光谱的土壤肥力估算研究——以湟水流域为例[J]. 土壤通报, 2021, 52(3):575-584.
Hu Y N, Gao X H, Shen Z Y, et al. Estimating fertility index by using field-measured vis-NIR spectroscopy in the Huanghui River basin[J]. Chinese Journal of Soil Science, 2021, 52(3):575-584.
[16] 闵秀云, 武君, 高春亮, 等. 基于元素分析仪测定土壤有机碳的不同前处理方法对比研究[J]. 盐湖研究, 2020, 28(4):64-70.
Min X Y, Wu J, Gao C L, et al. The comparative study on different pretreatment methods of soil organic carbon determined by elemental analyzer[J]. Journal of Salt Lake Research, 2020, 28(4):64-70.
[17] Lu L R, Luo J H, Xin Y H, et al. How can UAV contribute in satellite-based phragmites australs aboveground biomass estimating?[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114:103024.
[18] Zhu C M, Ding J L, Zhang Z P, et al. Exploring the potential of UAV hyperspectral image for estimating soil salinity:Effects of optimal band combination algorithm and random forest[J]. Spectrochimica Acta Part A,Molecular and Biomolecular Spectroscopy, 2022, 279:121416.
[19] 蔡海辉, 彭杰, 柳维扬, 等. 基于棉田原位高光谱数据的土壤pH值反演与制图研究[J]. 水土保持通报, 2021, 41(4):189-195.
Cai H H, Peng J, Liu W Y, et al. Inversion and mapping of soil pH valve based on in-situ hyperspectral data in cotton field[J]. Bulletin of Soil and Water Conservation, 2021, 41(4):189-195.
[20] Zhu C M, Ding J L, Zhang Z P, et al. SPAD monitoring of saline vegetation based on Gaussian mixture model and UAV hyperspectral image feature classification[J]. Computers and Electronics in Agriculture, 2022, 200:107236.
[21] Chang C W, Laird D A, Mausbach M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2):480-490.
[22] 孙肖, 彭军还, 赵锋, 等. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2):37-46.doi: 10.6046/zrzyyg.2021214.
Sun X, Peng J H, Zhao F, et al. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2):37-46.doi: 10.6046/zrzyyg.2021214.
[23] 孙问娟, 李新举. 煤矿区土壤有机碳含量的高光谱预测模型[J]. 水土保持学报, 2018, 32(5):346-351.
Sun W J, Li X J. Hyperspectral prediction model of soil organic carbon content in coal mining area[J]. Journal of Soil and Water Conservation, 2018, 32(5):346-351.
[24] 陈红艳, 赵庚星, 张晓辉, 等. 去除水分影响提高土壤有机质含量高光谱估测精度[J]. 农业工程学报, 2014, 30(8):91-100.
Chen H Y, Zhao G X, Zhang X H, et al. Improving estimation precision of soil organic matter content by removing effect of soil moisture from hyperspectra[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8):91-100.
[25] Guo L, Fu P, Shi T, et al. Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images[J]. Soil and Tillage Research, 2020, 196:104477.
[26] 殷彩云, 白子金, 罗德芳, 等. 基于高光谱数据的土壤全氮含量估测模型对比研究[J]. 中国土壤与肥料, 2022(1):9-15.
Yin C Y, Bai Z J, Luo D F, et al. Comparative study on estimation models of soil total nitrogen content based on hyperspectral data[J]. Soil and Fertilizer Sciences in China, 2022(1):9-15.
[27] 纪文君. 基于野外vis-NIR高光谱的土壤属性预测及田间水分影响去除研究[D]. 杭州: 浙江大学, 2014.
Ji W J. Removing the effects of soil water and the environment from in situ recorded visible and near-infrared spectra for the prediction of key soil properties in paddy soils[D]. Hangzhou: Zhejiang University, 2014.
[28] 陈玮, 徐占军, 郭琦. 煤炭矿区耕地土壤有机质无人机高光谱遥感估测[J]. 农业工程学报, 2022, 38(8):98-106.
Chen W, Xu Z J, Guo Q. Estimation of soil organic matter by UAV hyperspectral remote sensing in coal mining areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8):98-106.
[29] 张东辉, 赵英俊, 秦凯, 等. 光谱变换方法对黑土养分含量高光谱遥感反演精度的影响[J]. 农业工程学报, 2018, 34(20):141-147.
Zhang D H, Zhao Y J, Qin K, et al. Influence of spectral transformation methods on nutrient content inversion accuracy by hyperspectral remote sensing in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20):141-147.
[30] 晏红波, 韦晚秋, 卢献健, 等. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2):1-9.doi: 10.6046/zrzyyg.2021126.
Yan H B, Wei W Q, Lu X J, et al. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2):1-9.doi: 10.6046/zrzyyg.2021126.
[31] 高文龙, 张圣微, 林汐, 等. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4):235-242.doi: 10.6046/zrzyyg.2020418.
Gao W L, Zhang S W, Lin X, et al. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4):235-242.doi: 10.6046/zrzyyg.2020418.
[32] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4):11-21.doi: 10.6046/zrzyyg.2021395.
Li X Y, Zhang F, Wang Z. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4):11-21.doi: 10.6046/zrzyyg.2021395.
[33] 肖艳, 辛洪波, 王斌, 等. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J]. 国土资源遥感, 2021, 33(2):33-39.doi: 10.6046/gtzyyg.2020299.
Xiao Y, Xin H B, Wang B, et al. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land and Resources, 2021, 33(2):33-39.doi: 10.6046/gtzyyg.2020299.
[34] 杨晓宇, 包妮沙, 曹粤, 等. 基于无人机成像光谱技术的农田土壤养分估测及制图[J]. 地理与地理信息科学, 2021, 37(5):38-45.
Yang X Y, Bao N S, Cao Y, et al. Estimation and mapping of soil nutrient in farmland based on UAV imaging spectrometry[J]. Geography and Geo-Information Science, 2021, 37(5):38-45.
[35] 罗德芳, 柳维扬, 彭杰, 等. 土壤水分去除算法的田间原位光谱反演棉田有机质[J]. 光谱学与光谱分析, 2022, 42(1):222-228.
Luo D F, Liu W Y, Peng J, et al. Field in situ spectral inversion of cotton organic matter based on soil water removal algorithm[J]. Spectroscopy and Spectral Analysis, 2022, 42(1):222-228.
[36] Wang L, Zhang B, Shen Q, et al. Estimation of soil salt and ion contents based on hyperspectral remote sensing data:A case study of Baidunzi basin,China[J]. Water, 2021, 13(4):559.
[37] Bai Z J, Xie M D, Hu B F, et al. Estimation of soil organic carbon using Vis-NIR spectral data and spectral feature bands selection in southern Xinjiang,China[J]. Sensors, 2022, 22(16):6124.
[1] 柴佳兴, 张云生, 杨振, 陈斯飏, 李海峰. 联合无人机影像生成DSM和DOM的多层次建筑物变化检测[J]. 自然资源遥感, 2024, 36(2): 80-88.
[2] 王振华, 谭智联, 李静, 常英立. Re-YOLOX: 利用Resizer改进的YOLOX近岸海域监测目标识别模型[J]. 自然资源遥感, 2023, 35(3): 10-16.
[3] 陈凯, 王春, 代文, 盛业华, 刘爱利, 汤国安. 基于控制点蒙特卡罗检验的无人机地形建模精度影响因素研究[J]. 自然资源遥感, 2023, 35(3): 107-115.
[4] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[5] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[6] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[9] 任超锋, 蒲禹池, 张福强. 顾及地理空间信息的无人机影像匹配像对提取方法[J]. 自然资源遥感, 2022, 34(1): 85-92.
[10] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[11] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[12] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[13] 李阳, 袁琳, 赵志远, 张晋磊, 王宪业, 张利权. 基于无人机低空遥感和现场调查的潮滩地形反演研究[J]. 自然资源遥感, 2021, 33(3): 80-88.
[14] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[15] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发