Multi-scenario simulation and prediction of land use in the Pearl River Delta urban agglomeration using the coupled Markov-FLUS model
CHAI Xinyu1(), WU Xianwen1(), CHEN Xiaohui2, WANG Yu3, ZHAO Xingtao3
1. Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, China 2. Jilin Institute of Architecture and Technology, Changchun 130114, China 3. Beijing KingGIS Technology Co., Ltd, Beijing100021, China
土地利用需求在不同发展目标定位下有所不同,科学合理调控土地利用变化是实现珠三角城市群土地资源高效利用、生态-发展-经济协调发展的重要基石。该文基于1990年、2000年、2010年和2020年4期珠三角城市群土地利用数据,利用Markov-FLUS(Markov-future land use simulation)模型,基于自然发展情景、生态保护情景和发展优先情景3种情景,预测了2035年珠三角城市群土地利用的数量和空间变化,并比较了3种情景下土地利用变化的差异。在此基础上,对2035年土地利用进行模拟分析,以满足流域不同发展目标导向下的国土空间优化配置。研究结果表明: ①珠三角城市群建设用地利用变化显著,1990—2020年,城市用地、基础设施用地和其他建设用地面积增加了4 945.25 km2,增长了2.8倍。②在3种不同土地利用情景的模拟和预测下,城市土地面积在2035年之前将保持增长趋势,但在发展优先情景下其扩张速度将受到限制。在2种不同土地利用场景的模拟和预测下,到2035年,林地、草地和水域等生态用地面积将保持增长趋势。③1990—2020年,耕地面积减少了3 759.5 km2。在3种不同土地利用情景的模拟预测下,耕地面积将持续减少,但2020—2035年,减少趋势将放缓。在发展情景中,建设用地面积持续增加,耕地面积减少趋势得到一定遏制,草原和林地面积的减少更加严重。实验结果可为珠三角地区今后城市发展、规划、保护提出建议和对策。
Land use demands vary under different development objectives. Scientifically and rationally regulating changes in land use are crucial to efficient land resource utilization and achieving ecological, developmental, and economic coordination in the Pearl River Delta urban agglomeration. Based on the land use data of the urban agglomeration of 1990, 2000, 2010, and 2020 and using the FLUS-Markov model, this study predicted the quantity and spatial changes in land use in the Pearl River Delta urban agglomeration by 2035 under three scenarios: natural development, ecological protection, and development priority. Furthermore, this study determined the differences in land use change under the three scenarios. Additionally, a simulation analysis of the land use in 2035 was conducted to facilitate the optimized land and space allocation under varying developmental objectives. The results indicate significant changes in the use of construction land in the Pearl River Delta urban agglomeration. From 1990 to 2020, the area of construction land, including urban land and infrastructure land increased by 4 945.25 km2, representing an increase of 2.8 times. The simulations and predictions under three land use scenarios reveal that the urban land area will trend upward by the end of 2034, with its expansion speed being restricted under the ecological protection scenario, while the ecological land, such as forest land, grassland, and water area, will maintain an increasing trend until 2035. From 1990 to 2020, the arable land area decreased by 3 759.5 km2. Under the three land use scenarios, the trend of arable land reduction will continuously decrease until 2035, with the decreasing trends slowing down from 2020 to 2035. Especially, under the development scenario, the area of construction land will continue to increase, the decreasing trend of the arable land area will be somewhat curbed, while the area of grassland and forest land will undergo a more serious decrease. Although dominant factors affecting arable land protection in the Pearl River Delta urban agglomeration vary across different development stages, the main factor is infrastructure construction such as rail transit roads.
柴新宇, 吴献文, 陈晓辉, 王玉, 赵星涛. 耦合Markov与FLUS模型的珠三角城市群土地利用多情景模拟预测[J]. 自然资源遥感, 2025, 37(2): 140-147.
CHAI Xinyu, WU Xianwen, CHEN Xiaohui, WANG Yu, ZHAO Xingtao. Multi-scenario simulation and prediction of land use in the Pearl River Delta urban agglomeration using the coupled Markov-FLUS model. Remote Sensing for Natural Resources, 2025, 37(2): 140-147.
Li S Y, Liu X P, Li X, et al. Simulation model of land use dynamics and application:Progress and prospects[J]. Journal of Remote Sensing, 2017, 21(3):329-340.
[2]
Chen L, Su W, Li M, et al. A population randomization-based multi-objective genetic algorithm for gesture adaptation in human-robot interaction[J]. Science China Information Sciences, 2020, 64(1):112208.
Fang Z S, Zhong C R, Wang F X, et al. Spatial-temporal evolution and prediction of ecosystem carbon storage on Hainan Island by coupling InVEST and FLUS models[J]. Bulletin of Soil and Water Conservation, 2023, 43(5):320-329,342.
Qiu Y M. Study on settlements evolution and spatial optimization of land use in the Quanfuzhuang by means of Markov and FLUS models[D]. Kunming: Yunnan Normal University, 2020.
Du J Z, Wang G X, Li Y S. Changes of land cover pattern in the source region of Yangtze River based on Markov process[J]. Chinese Journal of Ecology, 2015, 34(1):195-203.
Wang Z L, Huang Y H, Yang L, et al. Dynamics of land use and landscape pattern of forest ecosystem nature reserve in Shenzhen in recent 20 years[J]. Forestry and Environmental Science, 2019, 35(2):1-6.
Ren Y M, Liu X P, Xu X C, et al. Multi-scenario simulation of land use change and its impact on ecosystem services in Beijing-Tianjin-Hebei Region based on the FLUS-InVEST Model[J]. Acta Ecologica Sinica, 2023, 43(11):4473-4487.
Wang X, Ma B W, Li D, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1):230-242.
doi: 10.31497/zrzyxb.20200119
[11]
Wang X, Ma B W, Li D, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1):230.
doi: 10.31497/zrzyxb.20200119
[12]
Oliver M A, Webster R. A tutorial guide to geostatistics:Computing and modelling variograms and Kriging[J]. Catena, 2014, 113:56-69.
Chen L T, Cai H S, Zhang T, et al. Land use multi-scenario simulation analysis of Rao River Basin based on Markov-FLUS model[J]. Acta Ecologica Sinica, 2022, 42(10):3947-3958.
Li L, Hu R K, Li S H. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model[J]. Remote Sensing for Natural Resources, 2023, 35(1):81-89.doi: 10.6046/zrzyyg.2022065.
Wang J N, Zhang Z. Land use change and simulation analysis in the northern margin of the Qaidam Basin based on Markov-PLUS model[J]. Journal of Northwest Forestry University, 2022, 37(3):139-148,179.
Xie L L, Xu J L, Zang J M, et al. Simulation and prediction of land use change in Guangxi based on Markov-FLUS model[J]. Research of Soil and Water Conservation, 2022, 29(2):249-254,264.
[18]
Deal B, Farello C, Lancaster M, et al. A dynamic model of the spatial spread of an infectious disease:The case of fox rabies in Illinois[J]. Environmental Modeling and Assessment, 2000, 5(1):47-62.
[19]
Liu X, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116.
[20]
Ji Z, Wei H, Xue D, et al. Trade-off and projecting effects of land use change on ecosystem services under different policies scenarios:A case study in central China[J]. International Journal of Environmental Research and Public Health, 2021, 18(7):3552.
Dai W Y, Jiang F Q, Huang W L, et al. Study on transition of land use function and ecosystem service value based on the conception of production,living and ecological space:A case study of the Fuzhou new area[J]. Journal of Natural Resources, 2018, 33(12):2098-2109.
Su Y Q, Liu G, Zhao J B, et al. Multi-scenario simulation prediction of ecological space in the Fenhe River Basin using the FLUS model[J]. Arid Zone Research, 2021, 38(4):1152-1161.
doi: 10.13866/j.azr.2021.04.27
Jiang Z P, Bao A M, Li Y H. Scenario simulation analysis of Urumqi urban sprawl based on GeoSOS-FLUS model[J]. Remote Sensing Technology and Application, 2023, 38(2):332-340.