Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 113-121    DOI: 10.6046/zrzyyg.2024261
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合FFT和EMHSA的双时相光学遥感影像变化检测网络
王杏伟1(), 唐康其2(), 刘燕3, 刘欢4
1.中铁第四勘察设计院集团有限公司,武汉 430063
2.成都理工大学地球与行星科学学院,成都 610059
3.成都理工大学地理与规划学院,成都 610059
4.四川安信科创科技有限公司,成都 610045
Change detection network for dual-temporal optical remote sensing images integrating fast Fourier transform and efficient multi-head self-attention
WANG Xingwei1(), TANG Kangqi2(), LIU Yan3, LIU Huan4
1. China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China
2. College of Earth and Planetary Sciences,Chengdu University of Technology,Chengdu 610059,China
3. College of Geography and Planning,Chengdu University of Technology,Chengdu 610059,China
4. Sichuan Anxin Kechuang Technology Co.,Ltd.,Chengdu 610045,China
全文: PDF(5536 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,基于深度学习的遥感变化检测取得了飞速发展,但对于复杂场景的变化检测仍然存在识别不完整、误检率高的问题。该文在SNUnet的基础上,通过融合快速傅里叶变换(fast Fourier transform,FFT)和高效多头自注意力机制(efficient multi-head self attention,EMHSA),提出了FTUNet网络。网络中的FFT模块实现对两时相图像的风格统一,降低由于光照变化等外界因素产生的“伪变化”所引起的错误检测;而在网络的特征提取阶段,引入EMHSA,充分提取特征图的上下文信息,以提高变化目标分割结果的完整性。在LEVIR-CD和SYSU-CD这2个公开数据集上的实验结果表明,FTUNet的F1得分比SNUNet分别提升1.42和1.53百分点,交并比分别提升2.31和2.07百分点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杏伟
唐康其
刘燕
刘欢
关键词 快速傅里叶变换遥感影像变化检测风格统一上下文信息    
Abstract

The deep learning-based change detection of remote sensing images has seen rapid advances in the past few years. However,it still faces challenges for change detection in complex scenes,such as incomplete recognition and high false detection rates. In response to these challenges,this paper proposed the FTUNet,a network based on SNUnet that integrates the fast Fourier transform (FFT) and efficient multi-head self-attention (EMHSA). Specifically,the FFT module in the network enabled style unification of dual-temporal images,reducing false detection caused by “pseudo changes” due to external factors such as light variations. Additionally,the EMHSA was introduced in the feature extraction stage to fully extract the contextual information from the feature maps,thereby enhancing the segmentation integrity of target changes. Experiments on the LEVIR-CD and SYSU-CD public datasets showed that the FTUNet exhibited increases of 1.42 and 1.53 percentage points in F1 score,as well as increases of 2.31 and 2.07 percentage points in intersection over union (IoU),compared to the SNUNet.

Key wordsfast Fourier transform (FFT)    remote sensing image    change detection    style unification    contextual information
收稿日期: 2024-07-31      出版日期: 2025-10-28
ZTFLH:  TP79  
基金资助:教育部人文社会科学研究项目“西藏茶马古道传统村落的保护机制与活化路径研究”(23YJA850003);四川省科技计划项目(重点研发)“化工重大危险源事故监测预警及应急救援决策支撑关键技术研究与示范”(2023YFS0415)
通讯作者: 唐康其(1996-),男,硕士,主要研究方向为遥感影像变化检测。Email:946596333@qq.com
作者简介: 王杏伟(1984-),男,硕士,高级工程师,主要从事铁路工程测量、遥感领域的工作。Email:sky_wxw@qq.com
引用本文:   
王杏伟, 唐康其, 刘燕, 刘欢. 融合FFT和EMHSA的双时相光学遥感影像变化检测网络[J]. 自然资源遥感, 2025, 37(5): 113-121.
WANG Xingwei, TANG Kangqi, LIU Yan, LIU Huan. Change detection network for dual-temporal optical remote sensing images integrating fast Fourier transform and efficient multi-head self-attention. Remote Sensing for Natural Resources, 2025, 37(5): 113-121.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024261      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/113
Fig.1  FTUNet网络总体结构图
Fig.2  FFTM基本原理示意图
Fig.3  LRCFEM结构图
Fig.4  EMHSA结构图
网络模型 P R IoU F1
SNUNet(基准网络) 89.91 87.21 79.44 88.54
SNUNet+FFT 90.81 87.86 80.69 89.31
SNUNet+LRCFEM 90.46 89.15 81.50 89.81
FTUNet(本文网络) 90.72 89.22 81.75 89.96
Tab.1  消融实验结果
序号 影像A 影像B 标签 SNUNet SNUNet+FFT SNUNet+LRCFEM FTUNet
a
b
c
d
图例
Tab.2  消融实验可视化结果
Fig.5  FFTM可视化结果
网络模型 P R IoU F1
FC-EF 86.69 79.87 71.15 83.14
FC-Siam-conc 89.41 85.02 77.24 87.16
FC-Siam-diff 90.12 83.01 76.09 86.42
SNUNet 89.91 87.21 79.44 88.54
BIT 92.01 86.72 80.65 89.28
FTUNet(本文网络) 90.72 89.22 81.75 89.96
Tab.3  LEVIR-CD数据集对比实验结果
序号 影像A 影像B 标签 FE-EF FC-Siam-
conc
FC-Siam-
diff
BIT SNUNet FTUNet
a
b
c
d
e
图例
Tab.4  LEVIR-CD数据集对比实验可视化结果
网络模型 P R IoU F1
FC-EF 78.60 69.55 58.47 73.80
FC-Siam-conc 81.11 70.76 60.75 75.59
FC-Siam-diff 90.35 49.33 46.86 63.81
SNUNet 81.90 74.37 63.87 77.95
BIT 81.71 73.49 63.11 77.38
FTUNet(本文网络) 79.95 79.01 65.94 79.48
Tab.5  SYSU-CD数据集对比实验结果
序号 影像A 影像B 标签 FE-EF FC-Siam-
conc
FC-Siam-
diff
BIT SNUNet FTUNet
a
b
c
d
e
图例
Tab.6  SYSU-CD数据集对比实验可视化结果
[1] Bruzzone L, Bovolo F. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images[C]// Proceedings of the IEEE.July 24, 2012, IEEE, 2013:609-630.
[2] Zhu Q Q, Guo X, Deng W H, et al. Land-use/land-cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184:63-78.
[3] Lv Z Y, Liu T F, Benediktsson J A, et al. Land cover change detection techniques:Very-high-resolution optical images:A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1):44-63.
[4] Wen D W, Huang X, Bovolo F, et al. Change detection from very-high-spatial-resolution optical remote sensing images:Methods,applications,and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4):68-101.
[5] Bhatt A, Ghosh S K, Kumar A. Spectral indices based object oriented classification for change detection using satellite data[J]. International Journal of System Assurance Engineering and Management, 2018, 9(1):33-42.
[6] Atasever U H, Kesikoglu M H, Ozkan C. A new artificial intelligence optimization method for pca based unsupervised change detection of remote sensing image data[J]. Neural Network World, 2016, 26(2):141-154.
[7] Nagne A D, Vibhute A D, Dhumal R K, et al. Urban LULC change detection and mapping spatial variations of Aurangabad City using IRS LISS-III temporal datasets and supervised classification approach[M]//Data Analytics and Learning. Singapore: Springer Singapore,2018:369-386.
[8] Zhang X F, Cheng S L, Wang L J, et al. Asymmetric cross-attention hierarchical network based on CNN and Transformer for bitemporal remote sensing images change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:2000415.
[9] Fang S, Li K Y, Shao J Y, et al. SNUNet-CD:A densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:8007805.
[10] Daudt R C, Le Saux B, Boulch A. Fully convolutional Siamese networks for change detection[C]//2018 25th IEEE International Conference on Image Processing (ICIP). October 7-10,2018.Athens. IEEE, 2018:4063-4067.
[11] Chen H, Shi Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662.
[12] Zhang C X, Yue P, Tapete D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:183-200.
[13] Zhou Z W, Rahman Siddiquee M M, Tajbakhsh N, et al. UNet++:A nested U-Net architecture for medical image segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer Internatio-nal Publishing,2018:3-11.
[14] Chen H, Qi Z P, Shi Z W. Remote sensing image change detection with Transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5607514.
[15] Feng Y C, Jiang J W, Xu H H, et al. Change detection on remote sensing images using dual-branch multilevel intertemporal network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:4401015.
[16] Zhang R Q, Zhang H C, Ning X G, et al. Global-aware Siamese network for change detection on remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199:61-72.
[17] 宋嘉鑫, 李轶鲲, 杨树文, 等. 基于后验概率空间变化向量分析的NSCT高分辨率遥感影像变化检测[J]. 自然资源遥感, 2024, 36(3):128-136.doi:10.6046/zrzyyg.2023079.
Song J X, Li Y K, Yang S W, et al. NSCT-based change detection for high-resolution remote sensing images under the framework of change vector analysis in posterior probability space[J]. Remote Sensing for Natural Resources, 2024, 36(3):128-136.doi:10.6046/zrzyyg.2023079.
[18] 柴佳兴, 张云生, 杨振, 等. 联合无人机影像生成DSM和DOM的多层次建筑物变化检测[J]. 自然资源遥感, 2024, 36(2):80-88.doi:10.6046/zrzyyg.2023001.
Chai J X, Zhang Y S, Yang Z, et al. Multi-level building change detection based on the DSM and DOM generated from UAV images[J]. Remote Sensing for Natural Resources, 2024, 36(2):80-88.doi:10.6046/zrzyyg.2023001.
[19] 马惠, 刘波, 杜世宏. 多任务学习孪生网络的遥感影像多类变化检测[J]. 自然资源遥感, 2024, 36(1):77-85.doi:10.6046/zrzyyg.2022446.
Ma H, Liu B, Du S H. Multi-class change detection using a multi-task Siamese network of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(1):77-85.doi:10.6046/zrzyyg.2022446.
[20] Duhamel P, Vetterli M. Fast Fourier transforms:A tutorial review and a state of the art[J]. Signal Processing, 1990, 19(4):259-299.
[21] Gao Y H, Zhou M, Metaxas D N. UTNet:A hybrid transformer architecture for medical image segmentation[M]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021.Cham: Springer International Publishing,2021:61-71.
[22] Shi Q, Liu M X, Li S C, et al. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5604816.
[1] 龚绍军, 陈超, 范竞. 一种考虑地物含水量和长时序遥感影像的海岸线精准定位方法[J]. 自然资源遥感, 2025, 37(5): 53-61.
[2] 方留杨, 杨昌浩, 舒东, 杨学昆, 陈兴通, 贾志文. 基于双重特征融合的复杂环境下滑坡检测方法[J]. 自然资源遥感, 2025, 37(5): 91-100.
[3] 朱娟娟, 黄亮, 朱莎莎. 面向高分辨率遥感影像建筑物提取的SD-BASNet网络[J]. 自然资源遥感, 2025, 37(5): 122-130.
[4] 朱睿, 李轶鲲, 李小军, 杨树文, 谢江陵. 基于上下文敏感贝叶斯网络的角度阈值多元变化检测[J]. 自然资源遥感, 2025, 37(5): 131-140.
[5] 刘浩然, 严天笑, 朱月琴, 王艳萍, 陈祖谊, 杨昭颖, 朱浩濛. 基于一种改进YOLOv7算法模型的滑坡识别研究——以四川省白格地区为例[J]. 自然资源遥感, 2025, 37(4): 48-57.
[6] 张荞, 曹志成, 沈洋, 汪宙峰, 王成武, 许嘉欣. 一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法[J]. 自然资源遥感, 2025, 37(3): 85-94.
[7] 何晓军, 罗杰. 结合上下文与类别感知特征融合的高分遥感图像语义分割[J]. 自然资源遥感, 2025, 37(2): 1-10.
[8] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[9] 邵攀, 管宗胜, 贾付文. 基于宽度学习的非监督SAR影像变化检测[J]. 自然资源遥感, 2025, 37(2): 19-29.
[10] 聂诗音, 刘严松, 李会玲, 薛凯伦, 沈杜衡, 何博宇. 基于图谱耦合的高寒湿地土地类型识别与分类[J]. 自然资源遥感, 2025, 37(2): 204-211.
[11] 王体鑫, 杨金中, 邢宇, 王开建. 基于ArcPy与图面优化的国家级自然保护地遥感监测成果自动制图方法[J]. 自然资源遥感, 2025, 37(1): 252-259.
[12] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[13] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[14] 赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
[15] 邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发