Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 48-57    DOI: 10.6046/zrzyyg.2024110
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于一种改进YOLOv7算法模型的滑坡识别研究——以四川省白格地区为例
刘浩然1,2(), 严天笑1,2, 朱月琴2(), 王艳萍1, 陈祖谊1, 杨昭颖3, 朱浩濛4
1.防灾科技学院信息工程学院,廊坊 065201
2.应急管理部国家自然灾害防治研究院,北京 100085
3.中国自然资源航空物探遥感中心,北京 100083
4.浙江省地质院,杭州 310000
Landslide identification based on an improved YOLOv7 model: A case study of the Baige area
LIU Haoran1,2(), YAN Tianxiao1,2, ZHU Yueqin2(), WANG Yanping1, CHEN Zuyi1, YANG Zhaoying3, ZHU Haomeng4
1. Institute of Disaster Prevention Science and Technology, Langfang 065201, China
2. National Institute of Natural Disaster Prevention, Ministry of Emergency Management of China, Beijing 100085, China
3. China Aero Geophysical Survey and Remote Sensing Center, Beijing 100083, China
4. Zhejiang Institute of Geosciences, Hangzhou 310000, China
全文: PDF(6008 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

滑坡识别一直是地质灾害领域的一个研究热点,对于抢险应急指挥具有重要意义。针对滑坡检测的漏检误检以及识别精度不高的问题,该文通过对核心网络进行数据融合、增加卷积块注意力模块(convolutional block attention module,CBAM)、更改交并比(intersection over union,IoU)损失函数的优化等方法,提出一种改进的YOLOv7算法模型,实现了对滑坡同时进行目标检测与图像分割的功能,并以贵州省毕节市的滑坡数据集和四川省历史滑坡0.2 m高分辨率航空正射影像为例对模型的有效性进行了验证。研究结果表明,优化后的模型在山体滑坡的检测与分割任务中展现出较好的性能,相比于常规的YOLOv7模型以及Faster RCNN,Mask RCNN等主流模型方法,该模型对山体滑坡的识别更加高效、准确。以四川省白格地区为例,该模型在提高精度的同时可有效提高山体滑坡灾害信息获取的自动化程度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘浩然
严天笑
朱月琴
王艳萍
陈祖谊
杨昭颖
朱浩濛
关键词 目标检测图像分割YOLOv7滑坡识别遥感影像    
Abstract

Landslide identification has always been a research topic in the study of geological disasters, playing a significant role in emergency rescue and command. To address the limitations in landslide identification, such as missed/false detection, and low identification accuracy, this study proposed an improved YOLOv7 model that enables simultaneous object detection and image segmentation for landslides. The improved model optimized its core network by integrating data, adding the convolutional block attention module (CBAM), and changing the intersection over union (IoU) loss function. Its effectiveness was verified using the landslide dataset of Bijie City, Guizhou Province, and the 0.2 m high-resolution digital orthophoto map (DOM) of historical landslides in Sichuan Province. The results indicate that the improved model performed well in landslide detection and segmentation, achieving more efficient and accurate landslide identification compared to the conventional YOLOv7 model, and other prevailing models like Fast RCNN and Mask RCNN. Taking the Baige area in Sichuan Province as an example, this model can effectively enhance the automation level of landslide disaster information acquisition while improving accuracy.

Key wordsobject detection    image segmentation    YOLOv7    landslide identification    remote sensing image
收稿日期: 2024-03-21      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:浙江地质大数据应用中心有限公司项目“地质灾害遥感解译算法研发”(KZ230752);河北省大学生创新创业训练计划项目“InSAR与深度学习技术相结合的白格地区滑坡形变监测与识别”(S202211775007)
作者简介: 刘浩然(1999-),男,硕士,主要从事深度学习、遥感滑坡检测研究。Email: 942435351@qq.com
引用本文:   
刘浩然, 严天笑, 朱月琴, 王艳萍, 陈祖谊, 杨昭颖, 朱浩濛. 基于一种改进YOLOv7算法模型的滑坡识别研究——以四川省白格地区为例[J]. 自然资源遥感, 2025, 37(4): 48-57.
LIU Haoran, YAN Tianxiao, ZHU Yueqin, WANG Yanping, CHEN Zuyi, YANG Zhaoying, ZHU Haomeng. Landslide identification based on an improved YOLOv7 model: A case study of the Baige area. Remote Sensing for Natural Resources, 2025, 37(4): 48-57.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024110      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/48
Fig.1  四川省白格地区及周边滑坡灾害分布图
Fig.2  样本数据扩充效果
Fig.3  YOLOv7网络结构图
Fig.4  MPDIoU示意图
Fig.5  通道注意力模块网络架构
Fig.6  空间注意力模块网络架构
Fig.7  CBAM网络架构
模块 改进策略 精确率/% 召回率/% mAP@0.5/%
MPDIoU CBAM DEM
YOLOv7-segment 35.2 83.2 73.4 75.9
YOLOv7-segment-A 36.3 84.7 74.5 78.2
YOLOv7-segment-B 36.9 85.1 75.6 79.5
YOLOv7-segment-C 35.2 86.3 76.1 78.2
本文方法 37.9 89.4 79.8 83.5
Tab.1  各项改进的消融实验
Fig.8  各模型的mAP@0.5曲线对比图
算法模型 mAP@0.5/% 参数量/MB GFLOPs/GB
Mask R-CNN 75.4 45.8 66.55
YOLOv5L-seg 75.9 46.56 109.60
Faster-RCNN 70.6 41.00 241.40
YOLACT 68.7 47.70 126.80
YOLOv7-seg 79.8 38.27 143.20
本文算法 83.5 37.89 141.50
Tab.2  不同算法对比
Fig.9  算法改进前后对比效果图
Fig.10  漏检影像
Fig.11  误检影像
[1] 谭永杰, 刘荣梅, 朱月琴, 等. 论地质大数据的特点与发展方向[J]. 时空信息学报, 2023, 30(3):313-320.
Tan Y J, Liu R M, Zhu Y Q, et al. On the characteristics and development directions of geological big data[J]. Journal of Spatio-Temporal Information, 2023, 30(3):313-320.
[2] 张潇远, 苏巧梅, 赵财胜, 等. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法[J]. 测绘科学, 2023, 48(6):140-150.
Zhang X Y, Su Q M, Zhao C S, et al. A landslide susceptibility evaluation method using Bayesian algorithm to optimize XGBoost[J]. Science of Surveying and Mapping, 2023, 48(6):140-150.
[3] 康孟羽, 朱月琴, 陈晨, 等. 基于多元非线性回归和BP神经网络的滑坡滑动距离预测模型研究[J]. 地质通报, 2022, 41(12):2281-2289.
Kang M Y, Zhu Y Q, Chen C, et al. Research on landslide sliding distance prediction model based on multiple nonlinear regression and BP neural network[J]. Geological Bulletin of China, 2022, 41(12):2281-2289.
[4] 洪韬, 朱月琴, 郭艳军, 等. 基于XR技术的交互式地质场景模型构建方法研究[J]. 地质通报, 2023, 42(s1):469-478.
Hong T, Zhu Y Q, Guo Y J, et al. Research on interactive geological scene model construction method based on XR technology[J]. Geological Bulletin of China, 2023, 42(s1):469-478.
[5] Messeri A, Morabito M, Messeri G, et al. Weather-related flood and landslide damage:A risk index for Italian regions[J]. PLoS One, 2015, 10(12):e0144468.
[6] Chigira M, Yagi H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 2006, 82(4):202-221.
[7] Nichol J, Wong M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion[J]. International Journal of Remote Sensing, 2005, 26(9):1913-1926.
[8] Hang H T, Tung H, Hoa P D, et al. Spatial prediction of landslides along National Highway-6,Hoa Binh Province,Vietnam using novel hybrid models[J]. Geocarto International, 2022, 37(18):5201-5226.
[9] Lei T, Zhang Y, Lyu Z, et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):982-986.
[10] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
[11] Barlow J, Martin Y, Franklin S E. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains,British Columbia[J]. Canadian Journal of Remote Sensing, 2003, 29(4):510-517.
[12] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[13] Ding A, Zhang Q, Zhou X, et al. Automatic recognition of landslide based on CNN and texture change detection[C]// 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC).November 11-13,2016,Wuhan,China.IEEE, 2016: 444-448.
[14] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. 2022: 2207.02696v1. https://arxiv.org/abs/2207.02696v1.
[15] 曾超, 曹振宇, 苏凤环, 等. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008—2020年)[J]. 中国科学数据, 2022, 7(2):195-205.
Zeng C, Cao Z Y, Su F H, et al. A dataset of high-precision aerial imagery and interpretation of landslide and debris flow disaster in Sichuan and surrounding areas between 2008 and 2020[J]. China Scientific Data, 2022, 7(2):195-205.
[16] 黄震, 朱华波, 陶友瑞. 基于YOLOv5的打磨表面质量快速评价方法[J]. 智能计算机与应用, 2022, 12(11):247-252.
Huang Z, Zhu H B, Tao Y R. Rapid evaluation method of polished surface quality based on YOLOv5[J]. Intelligent Computer and Applications, 2022, 12(11):247-252.
[17] 宋敏毓, 陈力荣, 梁建安, 等. 轻量化改进网络的实时光纤端面缺陷检测模型[J]. 激光与光电子学进展, 2022, 59(24):2415006.
Song M Y, Chen L R, Liang J A, et al. Real-time optical fiber end surface defects detection model based on lightweight improved network[J]. Laser and Optoelectronics Progress, 2022, 59(24):2415006.
[18] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV).October 22-29,2017,Venice,Italy.IEEE, 2017: 2980-2988.
[19] Jocher G. Yolov5[EB/OL].(2020-08-10)[2023-04-10]. https://github.com/ultralytics/yolo-v5.
[20] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[21] Bolya D, Zhou C, Xiao F, et al. YOLACT:Real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).October 27 - November 2,2019,Seoul,Korea (South).IEEE, 2019: 9156-9165.
[1] 徐紫窈, 杨武, 施小龙. 轻量化YOLOv7-tiny的遥感图像小目标检测[J]. 自然资源遥感, 2025, 37(4): 1-11.
[2] 张荞, 曹志成, 沈洋, 汪宙峰, 王成武, 许嘉欣. 一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法[J]. 自然资源遥感, 2025, 37(3): 85-94.
[3] 郭伟, 李煜, 金海波. 高维上下文注意和双感受野增强的SAR船舶检测[J]. 自然资源遥感, 2025, 37(3): 104-112.
[4] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[5] 聂诗音, 刘严松, 李会玲, 薛凯伦, 沈杜衡, 何博宇. 基于图谱耦合的高寒湿地土地类型识别与分类[J]. 自然资源遥感, 2025, 37(2): 204-211.
[6] 王体鑫, 杨金中, 邢宇, 王开建. 基于ArcPy与图面优化的国家级自然保护地遥感监测成果自动制图方法[J]. 自然资源遥感, 2025, 37(1): 252-259.
[7] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[8] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[9] 赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
[10] 郭勇, 张琳翔, 许泽宇, 蔡中祥. 结合桥梁难分样本优化的大清河流域水坝遥感检测[J]. 自然资源遥感, 2024, 36(4): 201-209.
[11] 邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
[12] 于淼, 荆虹波, 王翔, 李兴久. 基于深度特征的多方向目标检测研究[J]. 自然资源遥感, 2024, 36(3): 267-271.
[13] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[14] 赵彬如, 牛思文, 王力彦, 杨晓彤, 焦红波, 王子珂. 面向海岛海岸带区域的高分遥感影像智能化色彩增强方法[J]. 自然资源遥感, 2024, 36(2): 70-79.
[15] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发