Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 7-11     DOI: 10.6046/gtzyyg.2012.02.02
Technology and Methodology |
The Application of Hyper-spectral Data and RBF Neural Network Method to Retrieval of Leaf Area Index of Grassland
BAO Gang1,2,3, QIN Zhi-hao3, ZHOU Yi3, BAO Yu-hai2, XIN Xiao-ping1, HONG Yu4, HAI Quan-sheng5
1. Hulunber Grassland Ecosystem Observation and Research Station, Beijing 100081, China;
2. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information System, Inner Mongolia Normal University, Huhehot 010022, China;
3. International Institute for Earth System Science, Nanjing University, Nanjing 210093, China;
4. College of Life Science and Technology, Inner Mongolia Normal University, Huhehot 010022, China;
5. Baotou Normal University, Baotou 014030, China
Download: PDF(931 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In accordance with the 120 sites of grassland canopy spectral reflectance and the leaf area index (LAI) data collected by Chinese Academy of Agricultural Science,the method of Radial Basis Function (RBF) neural network was developed for the prediction of LAI after the compression of spectral reflectance using principal component analysis (PCA).The PCA results show that the cumulative reliability of the first 9 PCs is up to 99.782%,covering the majority of original spectral information. The 120 sites of LAI and 9 PC samples were classified randomly for training dataset (90 sites) and predicting dataset (30 sites),and were used to establish the neural network and predict the LAI, respectively. The results show that the accuracy rate of training data is up to 100% (RMSE=0.009 6,R2=0.999).The root mean square error (RMSE) and correlation coefficient (R2) for the prediction dataset are 0.839 and 0.218 6 respectivdg, thus achieving more preferable results and improved the accuracy (RMSE=0.416 5,R2=0.570)of the traditional multiple linear regression method.
Keywords water quality type      TM imagery      water information extraction      spectral characteristics     
: 

TP 751.1

 
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Lei
DENG Ru-ru
CHEN Qi-dong
HE Ying-qing
QIN Yan
LOU Quan-sheng
Cite this article:   
CHEN Lei,DENG Ru-ru,CHEN Qi-dong, et al. The Application of Hyper-spectral Data and RBF Neural Network Method to Retrieval of Leaf Area Index of Grassland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 7-11.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.02     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/7
[1] 蒙继华,吴炳方,李强子.全国农作物叶面积指数遥感估算方法[J].农业工程学报,2007,23(2):160-167.
[2] Chen J M,Cihlar J.Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images[J].Remote Sensing of Environment,1996,55(2):153-162.
[3] 吴彤,倪绍祥,李云梅,等.基于地面高光谱数据的东亚飞蝗危害程度监测[J].遥感学报,2007,11(1):104-108.
[4] 赵巧丽,郑国清,段韶芬,等.基于冠层反射光谱的玉米LAI和地上干物重估测研究[J].华北农学报,2008,23(1):219-222.
[5] 马勤建,王登伟,黄春燕,等.棉花叶面积指数和地上干物质积累量的高光谱估算模型研究[J].棉花学报,2008,20(3):217-222.
[6] 王登伟,赵鹏举,黄春燕,等.基于棉花冠层FPAR的LAI和地面上鲜生物量估算研究[J].西北农林科技大学学报:自然科学版,2009,37(3):114-118.
[7] Moran M S,Clarke T R,Inoue Y,et al.Estimating Crop Water Deficit Using the Relation Between Surface-air Temperature and Spectral Vegetation Index[J].Remote Sensing of Environment,1994,49(3):246-263.
[8] Moran M S,Mass S J,Pinter P J Tr.Combining Remote Sensing and Modeling for Estimating Surface Evaporation and Biomass Production[J].Remote Sensing Review,1995,12(3-4):335-353.
[9] 飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006:116-130.
[10] Hummels D M,Ahemed W,Musavi M T.Adaptive Detection of Small Sinusoidal Signals in Non-gaussian Noise Using an RBF Neural Network[J].IEEE Trans on Neural Networks,1995,6(1):214-219.
[11] 许东,吴铮.基于MATLAB 6 x的系统分析与设计——神经网络[M].2版.西安:电子科技大学出版社,2002.
[12] 单杨,朱向荣,许青松,等.近红外光谱结合小波变换-径向基神经网络用于奶粉蛋白质与脂肪含量的测定[J].红外与毫米波学报,2010,29(2):129-131.
[13] Kokaly R F,Clark R N.Spectroscopic Determination of Leaf Biochemistry Using Band-depth Analysis of Absorption Features and Stepwise Multiple Linear Regression[J].Remote Sensing of Environment,1999,67(3):267-287.
[14] Curran P J,Dungan J L,Peterson D L.Estimating the Foliar Biochemical Concentration of Leaves with Reflectance Spectrometry:Testing the Kokaly and Clark Methodologies[J].Remote Sensing of Environment,2001,76(3):349-359.
[1] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[2] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[3] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[4] SUN Xiaofang. Urban features classification based on objects segmentation and hyperspectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 171-175.
[5] CHAI Ying, RUAN Renzong, CHAI Guowu, FU Qiaoni. Species identification of wetland vegetation based on spectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 86-90.
[6] XU Zhanghua, LIU Jian, CHEN Chongcheng, YU Kunyong, HUANG Xuying, WANG Meiya. Canopy spectral characteristics distinguishability analysis of Pinus massoniana forests with Dendrolimus punctatus Walker damage[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 41-47.
[7] DUAN Qiuya, MENG Lingkui, FAN Zhiwei, HU Weiguo, XIE Wenjun. Applicability of the water information extraction method based on GF-1 image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 79-84.
[8] ZHANG Lihua. Study of land salinization of Hanggin Rear Banner in Inner Mongolia based on ALOS image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 121-126.
[9] ZHOU Lintao, YANG Guofan, ZHAO Fuqiang, DU Juan. Water information extraction from remote sensing image using EMD and fraction method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 41-45.
[10] HU Weiguo, MENG Lingkui, ZHANG Dongying, FAN Zhiwei, CHENG Jianguo, LI Xiaohui. Methods of water extraction from ZY-1 02C satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 43-47.
[11] LIU Bingxin, LI Ying, GAO Chao. Method for oil spill information extraction from airborne multispectral imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 42-46.
[12] DIAN Yuanyong, FANG Shenghui. Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 30-37.
[13] CHEN Lei, DENG Ru-ru, CHEN Qi-dong, HE Ying-qing, QIN Yan, LOU Quan-sheng. The Extraction of Water Body Information from TM Imagery Based on Water Quality Types[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 90-94.
[14] QI Hao-Ping, WENG Yong-Ling, ZHAO Fu-Yue, FANG Hong-Bin. A Study of Salinity Characteristics and Spectral Characteristics of Salt-affected Soil in Caka-Gonghe Basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 4-8.
[15] LI Hong, ZHU Gu-Chang, ZHANG Yuan-Fei, YANG Zi-An. Reflectance Spectral Characteristics and Spatial Structure of Typical Objects
in Mineralization and Alteration Areas: A Case Study of the Tuquan—Jarud County Metallogenic Belt in Inner Mongolia
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech