Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 33-39     DOI: 10.6046/gtzyyg.2018.03.05
|
Extracting road networks from high-resolution remote sensing images using multi features and methods
Runsheng LI, Fanzhi CAO(), Wen CAO, Shuxiang WANG
Data and Target Engineering College, Information Engineering University, Zhengzhou 450001, China
Download: PDF(4242 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Roads on the high-resolution remote sensing images perform the stripe homogeneous region with ribbon-like shape and approximate width. According to these features, this paper presents a simple yet effective method of delineating road networks from high-resolution remote sensing images, which combines multi features and methods. The proposed method consists of three main steps. First, the mean shift algorithm is utilized to detect the modes of density of image points in spectral-spatial space which contain potential road center points and then detected mode points are classified into different classes by mean shift-based clustering on the basis of spectral information. Next, the combination of Gabor filtering and tensor encoding is used to identify the road class and to extract road center points. Lastly, road network is generated from detected road center points by means of tensor voting and connected component analysis. The experimental results demonstrate good performances of the proposed method in road network extraction, much better than the method proposed by Miao et al.

Keywords high-resolution      remote sensing image      homogeneity      mean shift      road networks construction     
:  TP79  
Corresponding Authors: Fanzhi CAO     E-mail: 513572289@qq.com
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Runsheng LI
Fanzhi CAO
Wen CAO
Shuxiang WANG
Cite this article:   
Runsheng LI,Fanzhi CAO,Wen CAO, et al. Extracting road networks from high-resolution remote sensing images using multi features and methods[J]. Remote Sensing for Land & Resources, 2018, 30(3): 33-39.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.05     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/33
Fig.1  Flow chart of road networks extraction
Fig.2  Steady-state point map of strip-shaped region
Fig.3  Process of stick voting
Fig.4  The first experiment of road networks extraction
Fig.5  The second experiment of road networks extraction
Fig.6  Comparative experiment of road extraction
评价结果 本文的方法 Miao等的方法
试验1
完备性 98.2 78.9
准确度 99.0 94.9
提取精度 97.3 75.8
试验2
完备性 92.8 75.6
准确度 98.5 93.0
提取精度 91.6 71.4
Tab.1  Evaluation results of road extraction accuracy(%)
[1] 刘扬, 付征叶, 郑逢斌 . 高分辨率遥感影像目标分类与识别研究进展[J]. 地球信息科学学报, 2015,17(9):1080-1091.
doi: 10.3724/SP.J.1047.2015.01080 url: http://d.wanfangdata.com.cn/Periodical/dqxxkx201509010
[1] Liu Y, Fu Z Y, Zheng F B . Review on high resolution remote sensing image classification and recognition[J]. Journal of Geo-Information Science, 2015,17(9):1080-1091.
[2] 史文中, 朱长青, 王昱 . 从遥感影像提取道路特征的方法综述与展望[J]. 测绘学报, 2001,30(3):257-262.
[2] Shi W Z, Zhu C Q, Wang Y . Road feature extraction from remotely sensed image:review and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2001,30(3):257-262.
[3] 周绍光, 陈超, 岳建平 . 形状先验和图割的高分辨率遥感影像道路段提取[J]. 测绘学报, 2014,43(1):60-65.
[3] Zhou S G, Chen C, Yue J P . Extracting roads from high-resolution RS images based on shape priors and graph Cuts[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(1):60-65.
[4] 周绍光, 向晶, 邱伟 , 等. 基于高分辨率影像的道路中心线提取技术研究[J]. 国土资源遥感, 2015,27(4):21-26.doi: 10.6046/gtzyyg.2015.04.04.
doi: 10.6046/gtzyyg.2015.04.04
[4] Zhou S G, Xiang J, Qiu W , et al. A study of road centerline extraction from high resolution image[J]. Remote Sensing for Land and Resources, 2015,27(4):21-26.doi: 10.6046/gtzyyg.2015.04.04.
[5] 雷小奇, 王卫星, 赖均 . 一种基于形状特征进行高分辨率遥感影像道路提取方法[J]. 测绘学报, 2009,38(5):457-465.
[5] Lei X Q, Wang W X, Lai J . A method of road extraction from high-resolution remote sensing images based on shape features[J]. Acta Geodaetica et Cartographica Sinica, 2009,38(5):457-465.
[6] 朱长青, 王耀革, 马秋禾 , 等. 基于形态分割的高分辨率遥感影像道路提取[J]. 测绘学报, 2004,33(4):347-351.
doi: 10.3321/j.issn:1001-1595.2004.04.013 url: http://d.wanfangdata.com.cn/Periodical_chxb200404013.aspx
[6] Zhu C Q, Wang Y G, Ma Q H , et al. Road extraction from high-resolution remotely sensed image based on morphological segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2004,33(4):347-351.
[7] Poullis C, You S Y . Delineation and geometric modeling of road networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(2):165-181.
doi: 10.1016/j.isprsjprs.2009.10.004 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271609001233
[8] Mena J B . State of the art on automatic road extraction for GIS update:A novel classification[J]. Pattern Recognition Letters, 2003,24(16):3037-3058.
doi: 10.1016/S0167-8655(03)00164-8 url: http://linkinghub.elsevier.com/retrieve/pii/S0167865503001648
[9] Song M J, Civco D . Road extraction using SVM and image segmentation[J]. Photogrammetric Engineering and Remote Sensing, 2004,70(12):1365-1371.
doi: 10.14358/PERS.70.12.1365 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=70&issue=12&spage=1365
[10] Shi W Z, Miao Z L, Wang Q M , et al. Spectral-spatial classification and shape features for urban road centerline extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(4):788-792.
doi: 10.1109/LGRS.2013.2279034 url: http://ieeexplore.ieee.org/document/6594858/
[11] Miao Z L, Shi W Z, Zhang H , et al. Road centerline extraction from high-resolution imagery based on shape features and multivariate adaptive regression splines[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(3):583-587.
doi: 10.1109/LGRS.2012.2214761 url: http://ieeexplore.ieee.org/document/6329404/
[12] Miao Z L, Shi W Z . Road centreline extraction from classified images by using the geodesic method[J]. Remote Sensing Letters, 2014,5(4):367-376.
doi: 10.1080/2150704X.2014.907935 url: http://www.tandfonline.com/doi/abs/10.1080/2150704X.2014.907935
[13] Das S, Mirnalinee T T, Varghese K . Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(10):3906-3931.
doi: 10.1109/TGRS.2011.2136381 url: http://ieeexplore.ieee.org/document/5766732/
[14] 曹帆之, 朱述龙, 朱宝山 , 等. 均值漂移与卡尔曼滤波相结合的遥感影像道路中心线追踪算法[J]. 测绘学报, 2016,45(2):205-212,223.
url: http://d.wanfangdata.com.cn/Periodical/chxb201602013
[14] Cao F Z, Zhu S L, Zhu B S , et al. Tracking Road centerlines from remotely sensed imagery using mean shift and Kalman filtering[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(2):205-212,223.
[15] Fukunaga K, Hostetler L D . The estimation of the gradient of a density function,with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975,21(1):32-40.
doi: 10.1109/TIT.1975.1055330 url: http://ieeexplore.ieee.org/document/1055330/
[16] Cheng Y Z . Mean shift,mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
doi: 10.1109/34.400568 url: http://ieeexplore.ieee.org/document/400568/
[17] Cover T M, Thomas J A . Elements of Information Theory[M]. Chichester:John Wiley & Sons, 2012.
[18] Daugman J G . Uncertainty relation for resolution in space,spatial frequency,and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical Society of America A, 1985,2(7):1160-1169.
doi: 10.1364/JOSAA.2.001160 url: https://www.osapublishing.org/abstract.cfm?URI=josaa-2-7-1160
[19] Medioni G, Tang C K, Lee M S . Tensor voting: theory and applications[J]. Proceedings of Rfia, 2000,34(8):1482-1495.
doi: 10.1109/TPAMI.2011.250 url: http://www.researchgate.net/publication/244954632_Tensor_Voting_Theory_and_Applications
[20] Mordohai P, Medioni G . Tensor Voting:A Perceptual Organization Approach to Computer Vision and Machine Learning[M]. California: Morgan & Claypool, 2006: 1-136.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[5] LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
[6] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[7] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[8] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[9] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[10] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[11] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[12] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[13] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[14] ZHANG Rui, YOU Shucheng, DU Lei, LU Jing, HE Yun, HU Yong. High-resolution remote sensing image segmentation based on improved superpixel and marker watershed[J]. Remote Sensing for Land & Resources, 2021, 33(1): 86-95.
[15] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech