Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 103-109     DOI: 10.6046/gtzyyg.2014.01.18
Technology Application |
Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique:A case study of Dezhou, Shandong
GE Daqing1,2, YIN Yueping3, WANG Yan2, ZHANG Ling2, GUO Xiaofang2, WANG Yi2
1. School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China;
2. China Aero Geophysical Surveying and Remote Sensing Center for Land and Resources, Beijing 100083, China;
3. China Institute for Geo-Environmental Monitoring, Beijing 100081, China
Download: PDF(1490 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Overexploitation of groundwater is the major factor responsible for ground subsidence in many areas. The development of the SAR Interferometry (InSAR) technique provides a powerful tool for revealing the detailed evolution of subsidence with the advantages of large coverage, dense spatial sampling and high temporal frequency. In this study, the authors present an example of complex deformation procedure monitoring by time series analysis of coherent point target with small baseline subsets. Taking Dezhou as the study area, the authors analyzed the subsidence evolution during the period from January 2004 to October 2010 by using the ENVISAT ASAR data. The causes of the seasonal subsidence and rebound were investigated by analyzing the groundwater pumping as well as leveling surveying and weather data. It can be concluded that the continuous overexploitation of the groundwater and the yearly rainfall changes are the major factors responsible for seasonal subsidence and rebound, which result in the close temporal relationship between subsidence and water level changes.

Keywords passive microwave remote sensing      land surface temperature      statistical algorithm      physical retrieval model      neural network algorithm     
:  TP79  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Fangcheng
SONG Xiaoning
LI Zhaoliang
Cite this article:   
ZHOU Fangcheng,SONG Xiaoning,LI Zhaoliang. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique:A case study of Dezhou, Shandong[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 103-109.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.18     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/103

[1] 殷跃平, 张作辰, 张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报, 2005, 16(2):1-8. Yin Y P, Zhang Z C, Zhang K J.Land subsidence and countermeasures for its prevention in China[J].The Chinese Jounal of Geological Hazard and Control, 2005, 16(2):1-8.

[2] 葛大庆, 郭小方, 张玲, 等.华北平原地面沉降区InSAR监测[R].北京:中国国土资源航空物探遥感中心, 2010. Ge D Q, Guo X F, Zhang L, et al.Subsidence monitoring with SAR interferometry in the North China Plain[R].Beijing:China Aero Geophysical Surveying and Remote Sensing Center for Land and Resources, 2010.

[3] 王艳, 葛大庆, 郭小方, 等.长江三角洲地区地面沉降InSAR监测[R].北京:中国国土资源航空物探遥感中心, 2010. Wang Y, Ge D Q, Guo X F, et al.Subsidence monitoring with SAR interferometry in the Yangtze River Delta area[R].Beijing:China Aero Geophysical Surveying and Remote Sensing Center for Land and Resources, 2010.

[4] Ferretti A, Prati C, Rocca F.Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J].IEEE Trans Geosci Remote Sensing, 2001, 38(5):2202-2212.

[5] Mora O, Mallorqui J J, Broquetas A.Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J].IEEE Trans Geosci Remote Sensing, 2003, 41(10):2243-2253.

[6] Charles W, Wegmuller U, Andreas W, et al.Interferometric point target analysis with JERS-1 L-band SAR data[C]//Proceedings of the IEEE Transactfions on Geoscience and Remote Sensing.Toulouse, France, 2003:4359-4361.

[7] Hoffmann J, Zebker H A, Galloway D L, et al.Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synethetic aperture Radar interferometry[J].Water Resources Research, 2001, 37(6):1551-1566.

[8] 王艳, 廖明生, 李德仁, 等.利用长时间序列相干目标获取地面沉降场[J].地球物理学报, 2007, 50(2):598-604. Wang Y, Liao M S, Li D R, et al.Subsidence velocity retrieveal from long term coherent targets in Radar interferometric stacks[J].Chinese Jounal Geophys, 2007, 50(2):598-604.

[9] http://www.terrafirma.eu.com/documents.htm

[10] 王小刚, 陈松, 王秀芹, 等.德州市地面沉降成因及防治对策浅析[J].地质灾害与环境保护, 2006, 17(3):62-66. Wang X G, Chen S, Wang X Q, et al.A Discussion on the causes of the ground subsidence and its countermeasures in Dezhou City[J].Journal of Geological Hazards and Environment Preservation, 2006, 17(3):62-66.

[11] 杨丽芝.德州深层地下水位降落漏斗演变机制与可调控性研究[D].北京:中国地质科学院, 2009. Yang L Z.Form principle and controlling-adjusting research about deep ground water depression cone in Dezhou[D].Beijing:Chinese Academy of Geologieal Seienee, 2009.

[12] 王胜岭, 宋波, 王德生, 等.德州市临盘采油区地面沉降监测[J].山东国土资源, 2009, 25(1):25-28, 32. Wang S L, Song B, Wang D S, et al.Land subsidence monitoring of Linpan oil mining area in Dezhou City[J].Land and Resources in Shandong Province, 2009, 25(1):25-28, 32.

[13] 何国荣, 冯在敏, 冯克印, 等.水准测量网监测在德州市地面沉降中的应用[J].山东国土资源, 2012, 28(6):28-30. He G R, Feng Z M, Feng K Y, et al.Application of leveling surveying for subsidence monitoring in Dezhou City[J].Land and Resources in Shandong Province, 2012, 28(6):28-30.

[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[3] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[4] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[5] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[6] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[7] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[8] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[9] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[10] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[11] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[12] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[13] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[14] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[15] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech