Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 54-62     DOI: 10.6046/gtzyyg.2018.01.08
Orginal Article |
Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method
Min YANG1,2,3(), Guijun YANG2,3,4(), Xiaoning CHEN5, Yongfeng ZHANG6, Jingni YOU5
1. Shaanxi Earthquake Agency, Xi’an 710068, China;
2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3. Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China
4. Beijing Engineering Research Center of Agricultural Internet of Things, Beijing 100097, China
5. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China;
6. Xi’an Zhongtianweidi Surveying & Mapping Technology Co., Ltd, Xi’an 710065, China;
Download: PDF(1593 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The application of the high spatio-temporal resolution data possesses very extensive foreground. Consequently, based on a flexible spatio-temporal data fusion(FSDAF)method and using MODIS and ASTER data,the authors generate the land surface temperature(LST) with high spatial and temporal resolution. FSDAF is a method based on spectral unmixing and thin plate spline interpolation function. Compared with the existing spatio-temporal data fusion method, its advantages lie in less input data,suitableness for heterogeneous surface and capability of predicting the gradient of land cover types and so on. The fusion results were verified by using the ASTER temperature products(7 days) and the surface radiation infrared temperature data(4 days)of the automatic weather station(AWS) sites. The results show that the LST images generated by the data fusion method based on FSDAF have higher clarity, the correlation coefficient of the fusion images and the ASTER LST products is higher than 0.91(September 28) , the room mean square error (RMSE) is less than 2.44 k(September 19), the mean absolute error (MAE) is less than 1.84 k (September 19)and the correlation coefficient of the fusion images and the AWS LST data R2 is higher than 0.64(August 18).

Keywords spatial and temporal fusion      data fusion      remote sensing      land surface temperature(LST)      automatic weather station(AWS)     
:  TP751.1  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Min YANG
Guijun YANG
Xiaoning CHEN
Yongfeng ZHANG
Jingni YOU
Cite this article:   
Min YANG,Guijun YANG,Xiaoning CHEN, et al. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.08     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/54
Fig.1  Location of study area and distribution of AWS sites
遥感数据 获取时间 空间分辨率/m 时间分辨率/d 数据说明 用途
MOD11_L2 20120710
20120802
20120818
1 000 1 LST数据 数据输入
ASTER LST 20120827
20120903
20120912
90 16 LST产品 数据输入及验证
Tab.1  Remote sensing data used in study
Fig.2  Technique flowchart
Fig.3  Average standard deviation of 17 AWS stations in 4 days
Fig.4  Scatter plots for ground measured LST by AWS station and LST generated by FSDAF fusion
Fig.5-1  LST distribution in study area in different dates
Fig.5-2  LST distribution in study area in different dates
Fig.6  Difference image of true LST and predicted LST
Fig.7-1  Scatter plots of LST predicted by FSDAF method and ASTER LST product
Fig.7-2  Scatter plots of LST predicted by FSDAF method and ASTER LST product
[1] 刘绍民,孙中平,李小文,等.蒸散量测定与估算方法的对比研究[J].自然资源学报,2003,18(2):161-167.
[1] Liu S M,Sun Z P,Li X W,et al.A comparative study on models for estimating evapotranspiration[J].Journal of Natural Resources,2003,18(2):161-167.
[2] Li A N,Zhao W,Deng W.A quantitative inspection on spatio-temporal variation of remote sensing-based estimates of land surface evapotranspiration in south Asia[J].Remote Sensing,2015,7(4):4726-4752.
[3] 张仁华,孙晓敏,王伟民,等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学D辑(地球科学),2004,34(s2):200-216.
[3] Zhang R H,Sun X M,Wang W M,et al.The physical basis of an operable regional scale surface fluxes on quantitative remote sensing Bilevel model[J].Science China Earth Sciences,2004,34(s2):200-216.
[4] Huang B,Wang J,Song H H,et al.Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1011-1015.
[5] Zhou J,Zhan W F,Hu D Y,et al.Improvement of mono-window algorithm for retrieving land surface temperature from HJ-1B satellite data[J].Chinese Geographical Science,2010,20(2):123-131.
[6] Wan Z M,Li Z L.A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980-996.
[7] Zhang Y.Understanding image fusion[J].Photogrammetric Engineering & Remote,2004,70(6):657-661.
[8] Zhu X L,Helmer E H,Gao F,et al.A flexible spatiotemporal method for fusing satellite images with different resolutions[J].Remote Sensing of Environment,2016,172:165-177.
[9] Gao F,Masek J,Schwaller M,et al.On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2207-2218.
[10] Zhu X L,Chen J,Gao F,et al.An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J].Remote Sensing of Environment,2010,114(11):2610-2623.
[11] Hilker T,Wulder M A,Coops N C,et al.A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J].Remote Sensing of Environment,2009,113(8):1613-1627.
[12] Zhukov B,Oertel D,Lanzl F,et al.Unmixing-based multisensor multiresolution image fusion[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1212-1226.
[13] Wu M Q,Niu Z,Wang C Y,et al.Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J].Journal of Applied Remote Sensing,2012,6(1): 063507.
[14] Huang B,Song H H.Spatiotemporal reflectance fusion via sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3707-3716.
[15] 角媛梅,马明国,肖笃宁.黑河流域中游张掖绿洲景观格局研究[J].冰川冻土,2003,25(1):94-99.
[15] Jiao Y M,Ma M G,Xiao D N.Research on the landscape pattern of Zhangye oasis in the middle reaches of Heihe River[J].Journal of Glaciology and Geocryology,2003,25(1):94-99.
[16] 刘润堂,李远华,许平.黑河流域农业节水任务及需正确处理的关系[J]. 中国水利, 2002(2):44-46.
[16] Liu R T,Li Y H,Xu P.Agricultural water saving task in Heihe River Basin and how to handle its relationship with other respects properly[J]. China Water Resources, 2002(2):44-46.
[17] 历华,王合顺,杜永明,等.黑河生态水文遥感试验:2012年黑河流域中游ASTER地表温度和地表发射率数据集[EB/OL].2015..
url: http://westdc.westgis.ac.cn/data/43932103-65cd-4b25-a750-8936913efafe
[17] Li H,Wang H S,Du Y M, et al. HiWATER: ASTER LST and LSE dataset in 2012 in the middle reaches of the Heihe River Basin[EB/OL].2015. .
url: http://westdc.westgis.ac.cn/data/43932103-65cd-4b25-a750-8936913efafe
[18] Li Z L,Tang B H,Wu H,et al.Satellite-derived land surface temperature:Current status and perspectives[J].Remote Sensing of Environment,2013,131:14-37.
[19] Xu Z W,Liu S M,Li X,et al.Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J].Journal of Geophysical Research:Atmospheres,2013,118(23):13140-13157.
[20] Li H,Sun D L,Yu Y Y,et al.Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China[J].Remote Sensing of Environment,2014,142:111-121.
[21] Yang G J,Weng Q H,Pu R L,et al.Evaluation of ASTER-like daily land surface temperature by fusing ASTER and MODIS data during the HiWATER-MUSOEXE[J].Remote Sensing,2016,8(1):75.
[22] 白洁,刘绍民,扈光.针对TM/ETM+遥感数据的地表温度反演与验证[J].农业工程学报,2008,24(9):148-154.
[22] Bai J,Liu S M,Hu G.Inversion and verification of land surface temperature with remote sensing TM/ETM+ data[J].Transactions of the CSAE,2008,24(9):148-154.
[23] 杨贵军,孙晨红,历华.黑河流域ASTER与MODIS融合生成高分辨率地表温度的验证[J].农业工程学报,2015,31(6):193-200.
[23] Yang G J,Sun C H,Li H.Verification of high-resolution land surface temperature by blending ASTER and MODIS data in Heihe River Basin[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(6):193-200.
[24] 于文凭,马明国.MODIS地表温度产品的验证研究——以黑河流域为例[J].遥感技术与应用,2011,26(6):705-712.
[24] Yu W P,Ma M G.Validation of the MODIS land surface temperature products:A case study of the Heihe River Basin[J].Remote Sensing Technology and Application,2011,26(6):705-712.
[25] Wan Z M.New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products[J].Remote Sensing of Environment,2008,112(1):59-74.
[26] 石月婵,杨贵军,李鑫川,等.融合多源遥感数据生成高时空分辨率数据的方法对比[J].红外与毫米波学报,2015,34(1):92-99.
[26] Shi Y C,Yang G J,Li X C,et al.Intercomparison of the different fusion methods for generating high spatial-temporal resolution data[J].Journal of Infrared and Millimeter Waves,2015,34(1):92-99.
[27] 邬明权,王洁,牛铮,等.融合MODIS与Landsat数据生成高时间分辨率Landsat数据[J].红外与毫米波学报,2012,31(1):80-84.
[27] Wu M Q,Wang J,Niu Z,et al.A model for spatial and temporal data fusion[J].Journal of Infrared and Millimeter Waves,2012,31(1):80-84.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech