Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (3) : 106-112     DOI: 10.6046/gtzyyg.2014.03.17
Technology Application |
Gas hydrate detection and assessment with remote sensing data of permafrost in the Qilian Mountain
LIU Song1, XING Xuewen1, ZHANG Qiang1, YANG Mingguo2
1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
2. China University of Geosciences, Wuhan 430074, China
Download: PDF(3371 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Gas hydrate in permafrost gradually decomposes and seeps to atmosphere because of global warming,and the seepage changes the methane (CH4) concentration of permafrost's atmosphere. In this paper, the possibility of gas hydrate detection with remote sensing data is proved by the nature gas detection experiments performed with domestic nature gas and ASD portable spectrometer. The experimental results show that two feature absorptions,spectra around 1 700 nm and 2 300 nm,are founded in the electromagnetic wave range from 380 to 2500 nm. Supported by the experiment,the authors selected the remote sensing data retrieved from the scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) sensor during the period from 2003 to 2006 to analyze temporal and spatial changes of atmospheric methane of the permafrost in the Qilian Mountain. In addition to the discovery of methane concentration's seasonal changes,the trend of its gradual increment characteristics was also detected. This phenomenon is considered to be the result of methane seepage from underground gas hydrate. Finally,in combination with the geological data, the atmospheric methane anomaly in February 2006 was used to evaluate the potential of gas hydrate of the permafrost in the Qilian Mountain and, as a result, a new prospecting area was recommended.
Keywords hyperspectral image      anomaly target detection      kernel function      support vector data description(SVDD)     
:  TP79  
  P627  
Issue Date: 01 July 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Baozhi
Cite this article:   
CHENG Baozhi. Gas hydrate detection and assessment with remote sensing data of permafrost in the Qilian Mountain[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 106-112.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.03.17     OR     https://www.gtzyyg.com/EN/Y2014/V26/I3/106
[1] Kvenvolden K A.天然气水合物基本知识[J].杨木状,译.海洋地质,2000(3):10-23. Kvenvolden K A.Basic knowledge of gas hydrate[J].Yang M Z,Trans.Marine Geology,2000(3):10-23.
[2] 陈圣波,刘闯,郭广猛.新一代地球观测信息在天然气水合物研究中的应用展望[J].自然资源学报,2002,17(4):470-475. Chen S B,Liu C,Guo G M.Future on the EOS(earth observing system)information applied to the gas hydrate[J].Journal of Natural Resources,2002,17(4):470-475.
[3] 卢振权,强祖基,吴必豪.利用卫星热红外遥感探测南海天然气水合物[J].地质学报,2002,76(1):100-107. Lu Z Q,Qiang Z J,Wu B H.Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea[J].Acta Geologica Sinica,2002,76(1):100-107.
[4] 卢振权,强祖基,吴必豪.南海临震前卫星热红外增温异常原因初探[J].地球学报,2002,23(1):42-46. Lu Z Q,Qiang Z J,Wu B H.A tentative interpretation of the formation of high temperature anomaly in satellite-based thermal infrared scanning images(STISI)of the South China Sea before earthquake[J].Acta Geosicientia Sinica,2002,23(1):42-46.
[5] 马立杰.利用卫星遥感探测海域天然气水合物[D].青岛:中国科学院海洋研究所,2005. Ma L J.Detection of oceanic gas hydrate by satellite remote sensing[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2005.
[6] 周强.陆域天然气水合物遥感探测研究[D].北京:中国地质大学(北京),2006. Zhou Q.Investigation on gashydrate in permafrost using remote sensing technique[D].Beijing:China University of Geosciences(Beijing),2006.
[7] 孙春岩,牛滨华,王宏语,等.西沙海槽研究区天然气水合物地球化学勘探及成藏模式研究[J].地学前缘,2005,12(1):243-251. Sun C Y,Niu B H,Wang H Y,et al.A study of gas hydrate geochemical exploration and deposit formation patterns in the Xisha ocean[J].Earth Science Frontiers,2005,12(1):243-251.
[8] Winkelmann K.On the applicability of imaging spectrometry for the detection and investigation of contaminated sites with particular consideration given to the detection of fuel hydrocarbon contaminants in soil[D].Berlin:BTU Cottbus,2005.
[9] 许惠青.大气甲烷研究现状及进展[J].内蒙古科技与经济,2010(11):41-42. Xu H Q.Research status and progress of atmospheric methane[J].Inner Mongolia Science Technology and Economy,2010(11):41-42.
[10] 张秀君.大气甲烷源和汇的研究[J].沈阳教育学院学报,2004,6(1):132-134. Zhang X J.The major sources and sinks for atmospheric methane[J].Journal of Shenyang College of Education,2004,6(1):132-134.
[11] Schneising O,Buchwitz M,Burrows J P,et al.Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite-Part 2:Methane[J].Atmospheric Chemistry Physics,2009,9:443-465.
[12] 祝有海,张省民,卢振权,等.我国陆域永久冻土带天然气水合物资源远景调查[R].北京:中国地质科学院矿产资源研究所,2007. Zhu Y H,Zhang S M,Lu Z Q,et al.The investigation of gashydrate potential in Chinese permafrost[R].Beijing:Institute of Mineral Resources,CAGS,2007.
[13] 冯益民.祁连造山带研究概况——历史、现状及展望[J].地球科学进展,1997,12(4):307-314. Feng Y M.Investigatory summary of the Qilian orogenic belt,China:History,presence and prospect[J].Advance in Earth Sciences,1997,12(4):307-314.
[14] 符俊辉,周立发.南祁连盆地石炭一侏罗系地层区划及石油地质特征[J].西北地质科学,1998,19(2):47-54. Fu J H,Zhou L F.Carboniferous-Jurassic stratigraphic provinces of the Southern Qilian Basin and their petro-geological features[J].Northwest Geoscience,1998,19(2):47-54.
[15] 符俊辉,周立发.南祁连盆地三叠纪地层及石油地质特征[J].西北地质科学,2000,21(2):64-72. Fu J H,Zhou L F.Triassic stratigraphic provinces of the Southern Qilian Basin and their petro-geological features[J].Northwest Geoscience,2000,21(2):64-72.
[16] 卢振权,祝有海,张永勤,等.青海省祁连山冻土区天然气水合物基本地质特征[J].矿床地质,2010,29(1):182-191. Lu Z Q,Zhu Y H,Zhang Y Q,et al.Basic geological characteristics of gas hydrates in Qilian Mountain permafrost area,Qinghai Province[J].Mineral Deposits,2010,29(1):182-191.
[17] 祝有海,张永勤,文怀军.祁连山冻土区天然气水合物及其基本特征[J].地球学报,2010,31(1):7-16. Zhu Y H,Zhang Y Q,Wen H J.Gas hydrates in the Qilian Mountain permafrost and their basic characteristics[J].Acta Geosicientica Sinica,2010,31(1):7-16.
[18] 黄霞,祝有海,王平康,等.祁连山冻土区天然气水合物烃类气体组分的特征和成因[J].地质通报,2011,30(12):1851-1856. Huang X,Zhu Y H,Wang P K,et al.Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian Mountain permafrost[J].Geological Bulletin of China,2011,30(12):1851-1856.
[19] 王佟,刘天绩,邵龙义,等.青海木里煤田天然气水合物特征与成因[J].煤田地质与勘探,2009,37(6):26-30. Wang T,Liu T J,Shao L Y,et al.Characteristics and origins of the gas hydrates in the Muli coalfield of Qinghai[J].Coal Geology and Exploration,2009,37(6):26-30.
[20] 刘昌岭,贺行良,孟庆国,等.祁连山冻土区天然气水合物分解气碳氢同位素组成特征[J].岩矿测试,2012,31(3):489-494. Liu C L,He X L,Meng Q G,et al.Carbon and hydrogen isotopic compositions characteristics of the released gas from natural gas hydrates in the Qilian Mountain permafrost[J].Rock and Mineral Analysis,2012,31(3):489-494.
[21] 庞守吉,苏新,何浩,等.祁连山冻土区天然气水合物地质控制因素分析[J].地学前缘,2013,20(1):223-239. Pang S J,Su X,He H,et al.Geological controlling factors of gas hydrate occurrence in Qilian Mountain permafrost,China[J].Earth Science Frontiers,2013,20(1):223-239.
[22] Schneising O.Sciamachy WFM-DOAS(WFMD)carbon dioxide and methane dry air column-averaged mole fractions-algorithm description and product specification[G].Institute of Environmental Physics,University of Bremen,2011.
[23] 张国君,乐群.基于Sciamachy WFM-DOAS数据的中国CH4柱浓度时空分布[C]//第七届长三角气象科技论坛论文集.2010:503-507. Zhang G J,Yue Q.Temporal and spatial distribution of Chinese CH4 column based on Sciamachy WFM-DOAS data[C]//Anthology of Seventh Meteorological Science and Technology Forum of Yangtze River Delta.2010:503-507.
[24] 张国君,乐群.利用Sciamachy资料分析中国CH4柱浓度分布[J].地理空间信息,2011,9(4):115-117. Zhang G J,Yue Q.Distribution of CH4 column in China using Sciamachy data[J].Geospatial Information,2011,9(4):115-117.
[25] 王嵩,张廷江.青海煤层气资源概况及找气方向[J].青海地质,1997,6(2):43-49. Wang S,Zhang Y J.A survey of coal gas resources in Qinghai and the way of coal gas prospecting[J].Qinghai Geology,1997,6(2):43-49.
[26] 张凤鸣.木里煤田的冻土[J].煤田地质与勘探,1989(3):50-54. Zhang F M.Permafrost in Muli coal field[J].Coal Geology and Exploration,1989(3):50-54.
[27] 吴吉春,盛煜,于辉,等.祁连山中东部的冻土特征(I):多年冻土分布[J].冰川冻土,2007,29(3):418-425. Wu J C,Sheng Y,Yu H,et al.Permafrost in the middle-east section of Qilian Mountains(I):Distribution of permafrost[J].Journal of Glaciology and Geocryology,2007,29(3):418-425.
[28] 吴吉春,盛煜,于辉,等.祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J].冰川冻土,2007,29(3):426-432. Wu J C,Sheng Y,Yu H,et al.Permafrost in the middle-east section of Qilian Mountains(Ⅱ):Characters of permafrost[J].Journal of Glaciology and Geocryology,2007,29(3):426-432.
[1] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[4] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[5] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[6] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[7] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[8] Xiaolu LIAO, Jia LIU, Xingxia ZHOU. Feature extraction and classification of hyperspectral image with ground-sky synchronization test[J]. Remote Sensing for Land & Resources, 2019, 31(3): 65-71.
[9] Ruhan A, Fang HE, Biaobiao WANG. Hyperspectral images classification via weighted spatial-spectral dimensionality reduction principle component analysis[J]. Remote Sensing for Land & Resources, 2019, 31(2): 17-23.
[10] Haicheng QU, Yue GUO, Yuanyuan WANG. Hyperspectral image classification based on dominant sets clustering and Markov random fields[J]. Remote Sensing for Land & Resources, 2019, 31(2): 24-31.
[11] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
[12] Sirui YANG, Zhaohui XUE, Ling ZHANG, Hongjun SU, Shaoguang ZHOU. Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River[J]. Remote Sensing for Land & Resources, 2018, 30(4): 33-40.
[13] Wanjun LIU, Tianhui LI, Haicheng QU. Hyperspectral similar sample classification algorithm based on Fisher criterion and TrAdaboost[J]. Remote Sensing for Land & Resources, 2018, 30(4): 41-48.
[14] DONG Anguo, GONG Wenjuan, HAN Xue. Band selection method for hyperspectral image based on linear representation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 39-42.
[15] JIANG Fan, ZHANG Chenjie. Anomaly detection algorithm based on NSCT and spatial clustering in hyperspectral imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech