Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 53-59     DOI: 10.6046/gtzyyg.2017.02.08
Contents |
Anomaly detection algorithm based on NSCT and spatial clustering in hyperspectral imagery
JIANG Fan1, ZHANG Chenjie2
1. Industrial Technology School of Suzhou Industrial Park, Suzhou 215123, China;
2. Changchun University of Science and Technology, Changchun 130022, China
Download: PDF(684 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Due to the interference of complex background information, anomaly detection algorithm has incremental false alarm rate. In order to overcome this problem, this paper proposes an improved SVDD algorithm combining the nonsubsampled contourlet transform (NSCT) with spatial clustering. Hyperspectral imagery is transformed by NSCT, and the low frequency image containing most background information is obtained. The background residual error which is the minus of the hyperspectral imagery and low frequency image can be acquired, whereupon the background information is suppressed. Then, the low frequency image is clustered by spatial clustering method, thereupon the feature spectrum of each sub-region is computed and used as a training sample for SVDD. Hence it can eliminate the influence induced by the anomalous spectrum or random noise, and the calculated amount is also reduced at the same time. Finally, the SVDD model is used to detect background residual error data. The results show that the proposed method can inhibit the interference of complex background. It has lower false alarm rate, and hence it is more appropriate for global anomaly detection in hyperspectral imagery.
Keywords hyperspectral data      PHI      dimensionality reduction      band selection method      SVM     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Xue
LIU Qingwang
TAN Bingxiang
Cite this article:   
FAN Xue,LIU Qingwang,TAN Bingxiang. Anomaly detection algorithm based on NSCT and spatial clustering in hyperspectral imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 53-59.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.08     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/53
[1] 张 兵,沙建军,王向伟,等.基于高光谱辐亮度图像进行目标探测的大气状态影响分析[J].光谱学与光谱分析,2012,32(8):2043-2049.
Zhang B,Sha J J,Wang X W,et al.Impact analysis of atmospheric state for target detection in hyperspectral radiance image[J].Spectroscopy and Spectral Analysis,2012,32(8):2043-2049.
[2] 赵春晖,王 佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(2):278-283.
Zhao C H,Wang J,Wang Y L.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].Journal of Harbin Engineering University,2016,37(2):278-283.
[3] 郭文记,曾晓茹,赵宝玮,等.高光谱RX异常检测的多DSP并行化处理技术[J].光谱学与光谱分析,2014,34(5):1383-1387.
Guo W J,Zeng X R,Zhao B W,et al.Multi-DSP parallel processing technique of hyperspectral RX anomaly detection[J].Spectroscopy and Spectral Analysis,2014,34(5):1383-1387.
[4] Molero J M,Paz A,Garzón E M,et al.Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters[J].The Journal of Supercomputing,2011,58(3):411-419.
[5] 赵春晖,李晓慧,田明华.采用主成分量化和密度估计期望最大聚类的高光谱异常目标检测[J].光子学报,2013,42(10):1224-1230.
Zhao C H,Li X H,Tian M H.Hyperspectral imaging abnormal target detection algorithm using principal component quantization and density estimation on EM clustering[J].Acta Photonica Sinica,2013,42(10):1224-1230.
[6] Banerjee A,Burlina P,Diehl C.A support vector method for anomaly detection in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2282-2291.
[7] 梅 锋,赵春晖,王立国,等.基于支持向量描述的自适应高光谱异常检测算法[J].光子学报,2009,38(11):2820-2825.
Mei F,Zhao C H,Wang L G,et al.Support vector data description based on adaptive anomaly detection method in hyperspectral imagery[J].Acta Photonica Sinica,2009,38(11):2820-2825.
[8] Banerjee A,Burlina P,Meth R.Fast hyperspectral anomaly detection via SVDD[C]//Proceedings of 2007 IEEE International Conference on Image Processing.San Antonio,TX:IEEE,2007:IV-101-IV-104.
[9] Wu Y Q,Wu C,Wu S H.Fusion of multispectral image and panchromatic image based on NSCT and NMF[J].Journal of Beijing Institute of Technology,2012,21(3):415-420.
[10] 孟强强,杨 桄,卢 珊,等.利用NSCT分解的高光谱异常检测[J].红外技术,2014,36(5):372-376.
Meng Q Q,Yang G,Lu S,et al.Anomaly detection algorithm based on NSCT decomposition in hyperspectral imagery[J].Infrared Technology,2014,36(5):372-376.
[11] 成宝芝,赵春晖,王玉磊.结合光谱解混的高光谱图像异常目标检测SVDD算法[J].应用科学学报,2012,30(1):82-88.
Cheng B Z,Zhao C H,Wang Y L.SVDD algorithm with spectral unmixing for anomaly detection in hyperspectral images[J].Journal of Applied Sciences,2012,30(1):82-88.
[12] 孟强强,杨 桄,孙嘉成,等.利用小波分解和顶点成分分析的高光谱异常检测[J].光电子·激光,2014,25(6):1152-1157.
Meng Q Q,Yang G,Sun J C,et al.Anomaly detection algorithm based on wavelet decomposition and vertex component analysis in hyperspectral images[J].Journal of Optoelectronics·Laser,2014,25(6):1152-1157.
[13] 高 昆,刘 莹,王丽静,等.基于高斯马尔科夫模型的高光谱异常目标检测算法研究[J].光谱学与光谱分析,2015,35(10):2846-2850.
Gao K,Liu Y,Wang L J,et al.A hyperspectral imagery anomaly detection algorithm based on Gauss-Markov model[J].Spectroscopy and Spectral Analysis,2015,35(10):2846-2850.
[1] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[2] WANG Yifei, GONG Zhaoning, ZHANG Yuan, SU Shuo. Extraction and application of Forel-Ule index based on images from multiple sensors[J]. Remote Sensing for Natural Resources, 2021, 33(3): 262-271.
[3] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[4] XIAO Dongsheng, LIAN Hong. Population spatialization based on geographically weighted regression model considering spatial stability of parameters[J]. Remote Sensing for Natural Resources, 2021, 33(3): 164-172.
[5] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[6] Aibin WU, Yanxia ZHAO, Yanjie QIN, Huitao SHEN, Qinchen LI. A study of topographical differentiation of ecological land spatial-temporal pattern in Hebei Province[J]. Remote Sensing for Land & Resources, 2020, 32(2): 146-153.
[7] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[8] Yaping LI, Xiaoping LU, Hang ZHANG, Zezhong LU, Shunyao WANG. Soil erosion in Huaihe River Basin based on GIS and RUSLE:Exemplified by Shangcheng County, Xinyang City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 243-249.
[9] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[10] Wei WANG, Samat Alim, Abuduwaili Jilili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 2019, 31(4): 32-40.
[11] Ce ZHANG, Lihong PENG, En ZHANG, Lihua FU, Bing WANG. A study of metallogenic prognosis of the Dimunalike iron ore belt based on remote sensing and aeromagnetic data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 216-224.
[12] Ruhan A, Fang HE, Biaobiao WANG. Hyperspectral images classification via weighted spatial-spectral dimensionality reduction principle component analysis[J]. Remote Sensing for Land & Resources, 2019, 31(2): 17-23.
[13] Yang ZHOU, Yunsheng ZHANG, Siyang CHEN, Zhengrong ZOU, Yaochen ZHU, Ruixue ZHAO. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land & Resources, 2019, 31(2): 44-50.
[14] Piyuan YI, Hanbo LI, Peng TONG, Yingjun ZHAO, Chuan ZHANG, Feng TIAN, Yongfei CHE, Wenhuan WU. Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor[J]. Remote Sensing for Land & Resources, 2019, 31(2): 66-72.
[15] Xuewen XING, Song LIU, Degang XU, Kaijun QIAN. Thickness estimation of crude oil slicks by hyperspectral data based on partial least square regression method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech