Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 88-93     DOI: 10.6046/gtzyyg.2015.02.14
Technology and Methodology |
Performance analysis of split-window algorithms for retrieving land surface temperature using remote sensing data of 8.0~9.3 μm
ZHANG Xiao1,2, TANG Yuyu1, HUANG Xiaoxian1, WEI Jun1
1. Shanghai Institute of Technical Physics of Chinese Academy of Sciences, Shanghai 200083, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(3929 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Spaceborne wide-field imaging spectrometer sets up two channels, CH18(8.125~8.825 μm) and CH19 (8.925~9.275 μm) for retrieving land surface temperature. To verify the adaptability of the traditional split-window algorithms applied to the atmospheric window of 10~14 μm for the atmospheric window of 8.0~9.3 μm, the authors introduced three kinds of split-window algorithms, i.e., Sobrino,Franca & Cracknell and Becker, with the parameter calculation formulae being revised against band setting for split-window in atmospheric window of 8.0~9.3 μm, and verified the retrieved accuracies of land surface temperature by the six standard atmospheric models supplied by MODTRAN. The results show that the present 3 kinds of split-window algorithms fail to meet the land surface temperature precision requirement of less than 1K and are not suitable for direct transplantation.

Keywords Landsat TM      SUTM      E-DisTrad      LST decomposition      Beijing     
:  TP751.1  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Caiying
QIN Zhihao
WANG Fei
Cite this article:   
SONG Caiying,QIN Zhihao,WANG Fei. Performance analysis of split-window algorithms for retrieving land surface temperature using remote sensing data of 8.0~9.3 μm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 88-93.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.14     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/88

[1] 覃志豪,Zhang M H,Arnon K,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466. Qin Z H,Zhang M H,Arnon K,et al.Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J].Acta Geographica Sinica,2001,56(4):456-466.

[2] Jiménez-Muñoz J C,Sobrino J A.A generalized single-channel method for retrieving land surface temperature from remote sensing data[J].Journal of Geophysical Research:Atmospheres(1984—2012),2003,108(D22):4688-4695.

[3] Becker F,Li Z L.Towards a local split window method over land surfaces[J].International Journal of Remote Sensing,1990,11(3):369-393.

[4] Sobrino J A,Coll C,Caselles V.Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5[J].Remote Sensing of Environment,1991,38(1):19-34.

[5] Qin Z H,Karnieli A.Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J].International Journal of Remote Sensing,1999,20(12):2367-2393.

[6] 周宁,尹球.一种热红外分裂窗辐射量线性组合的陆地温度遥感反演方法[J].电波科学学报,2004,19(4):464-468. Zhou N,Yin Q.A method for retrieving land surface temperature based on the split window algorithm with linear combination of two bands' radiance[J].Chinese Journal of Radio Science,2004,19(4):464-468.

[7] 朱怀松,刘晓锰,裴欢.热红外遥感反演地表温度研究现状[J].干旱气象,2007,25(2):17-21. Zhu H S,Liu X M,Pei H.Summary on retrieval of land surface temperature using thermal infrared remote sensing[J].Arid Meteorology,2007,25(2):17-21.

[8] 覃志豪,Zhang M H,Arnon K.用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J].国土资源遥感,2001,13(2):33-42.doi:10.6046/gtzyyg.2001.02.07. Qin Z H,Zhang M H,Arnon K.Split window algorithms for retrieving land surface temperature from NOAA-AVHRR data[J].Remote Sensing for Land and Resources,2001,13(2):33-42.doi:10.6046/gtzyyg.2001.02.07.

[9] 丁莉东,覃志豪,毛克彪.基于MODIS影像数据的劈窗算法研究及其参数确定[J].遥感技术与应用,2005,20(2):284-289. Ding L D,Qin Z H,Mao K B.A research of split window algorithm based on MODIS image data and parameter determination[J].Remote Sensing Technology and Application,2005,20(2):284-289.

[10] 高懋芳,覃志豪,徐斌.用MODIS数据反演地表温度的基本参数估计方法[J].干旱区研究,2007,24(1):113-118. Gao M F,Qin Z H,Xu B.Estimation of the basic parameters for deriving surface temperature from MODIS data[J].Arid Zone Research,2007,24(1):113-118.

[11] 孙静,赵萍,叶琦.一种ASTER数据地表温度反演的劈窗算法[J].遥感技术与应用,2012,27(5):728-734. Sun J,Zhao P,Ye Q.A split-window algorithm for retrieving land surface temperature from ASTER data[J].Remote Sensing Technology and Application,2012,27(5):728-734.

[12] 孟鹏,胡勇,巩彩兰,等.用劈窗算法反演地表温度的通道问题讨论[J].国土资源遥感,2012,24(4):16-20.doi:10.6046/gtzyyg.2012.04.03. Meng P,Hu Y,Gong C L,et al.Discussions on using channels of split-window algorithm to retrieve earth surface temperature[J].Remote Sensing for Land and Resources,2012,24(4):16-20.doi:10.6046/gtzyyg.2012.04.03.

[13] 覃志豪,Li W J,Zhang M H,等.单窗算法的大气参数估计方法[J].国土资源遥感,2003,15(2):37-43.doi:10.6046/gtzyyg.2003.02.10. Qin Z H,Li W J,Zhang M H,et al.Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from Landsat TM6[J].Remote Sensing for Land and Resources,2003,15(2):37-43.doi:10.6046/gtzyyg.2003.02.10.

[14] Franca G B,Cracknell A P.Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazil[J].International Journal of Remote Sensing,1994,15(8):1695-1712.

[15] Becker F.The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J].International Journal of Remote Sensing,1987,8(10):1509-1522.

[16] 杨青生,刘闯.MODIS数据陆面温度反演研究[J].遥感技术与应用,2004,19(2):90-94. Yang Q S,Liu C.Retrieving land surface temperature from MODIS data[J].Remote Sensing Technology and Application,2004,19(2):90-94.

[17] 孟凡影.基于MODIS数据的地表温度反演方法——以吉林省西部为例[D].长春:东北师范大学,2007. Meng F Y.The Retrieval Algorithm of Land Surface Temperature Based on MODIS Data[D].Changchun:Northeast Normal University,2007.

[18] 贡璐.干旱区城市热岛效应定量研究[D].乌鲁木齐:新疆大学,2007. Gong L.Quantitative Research of Urban Heat Island Effect in the Arid Land[D].Urumqi:Xinjiang University,2007.

[1] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
[2] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[3] Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM[J]. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
[4] Qi CAO, Manjiang SHI, Liang ZHOU, Ting WANG, Lijun PENG, Shilei ZHENG. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
[5] Jing ZHANG, Dongli JI, Yaonan BAI, Jinjie MIAO, Xu GUO, Dong DU, Yandong PEI. Research on the macro-characteristics of the sedimentation in the middle reach of Chaobai River based on remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 156-163.
[6] Xiaojing ZHANG, Beibei CHEN, Kunchao LEI, Wenfeng CHEN, Mingliang GAO, Chaofan ZHOU, Guangyao DUAN. Characteristics of land subsidence along Beijing-Tianjin inter-city railway (Beijing section)[J]. Remote Sensing for Land & Resources, 2019, 31(1): 171-179.
[7] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[8] YAN Fuli, XU Jianguo, LU Zhihong. Characteristics of multi-exposure images of BJ-1 intelligent micro satellite and its applications to snow cover extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 28-34.
[9] YIN Kai, TIAN Yichen, YUAN Chao, ZHANG Feifei, YUAN Quanzhi, HUA Lizhong. NPP spatial and temporal pattern of vegetation in Beijing and its factor explanation based on CASA model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 133-139.
[10] SONG Caiying, QIN Zhihao, WANG Fei. Comparison of two models for decomposition of land surface temperature image using Landsat TM data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 172-177.
[11] CHEN Zheng, HU Deyong, ZENG Wenhua, DENG Lei. TM image and nighttime light data to monitoring regional urban expansion:A case study of Zhejiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 83-89.
[12] MIAO Lili, JIANG Weiguo, WANG Shidong, ZHU Lin. Comprehensive assessments and zoning of ecological service functions for Beijing wetland based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 102-108.
[13] WU Zhi-jie, ZHAO Shu-he. A Study of Enhanced Index-based Built-up Index Based on Landsat TM Imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 50-55.
[14] ZHANG Zhi-xin, DENG Ru-ru, LI Hao, CHEN Lei, CHEN Qi-dong, HE Ying-qing. Remote Sensing Monitoring of Vegetation Coverage in Southern China Based on Pixel Unmixing: A Case Study of Guangzhou City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 88-94.
[15] WEI Xian-Hu, ZHANG Zeng-Xiang, HU Shun-Guang, LIU Fang. Random and Systematic Land-use Transitions in Mountainous Area of Beijing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech