Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 171-179     DOI: 10.6046/gtzyyg.2019.01.23
|
Characteristics of land subsidence along Beijing-Tianjin inter-city railway (Beijing section)
Xiaojing ZHANG1,2, Beibei CHEN1,2(), Kunchao LEI3, Wenfeng CHEN1,2, Mingliang GAO1,2, Chaofan ZHOU1,2, Guangyao DUAN4
1.Key Lab of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
2.State Key Laboratory Breeding Base of Process of Urban Environment and Digital Simulation, Beijing 100048, China
3.Beijing Institute of Hydrogeology and Engineering Geology, Beijing 100195, China
4.School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China
Download: PDF(11455 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, according to the land subsidence problem existing in the Beijing-Tianjin inter-city railway (Beijing section), time-series synthetic aperture Radar interferometry was used to obtain the land subsidence information from 2010 to 2015. Combined with the measured data of groundwater, the relationship between the groundwater level changes and the land subsidence at different layers was studied by using the cross wavelet method. Finally, the relationship between land subsidence and compressible clay thickness was analyzed based on the distribution of compressible clay in the study area. The result showed that average annual maximum sedimentation rate in the study area was 121mm/a, that the ground subsidence lagged the pressure level of the pressure level by 910 months, with the lag time of the submersible being 4 months, and that the ground subsidence rate in the control range of the same flushing fan increased with the thickness of compressible clay layer. This research is of great significance for the scientific effective prevention and control of uneven ground settlement on linear ground objects.

Keywords Beijing Tianjin inter-city railway (BTIR)      land subsidence      groundwater      lagging behind      compressible layer     
:  TP79  
Corresponding Authors: Beibei CHEN     E-mail: cnucbb@yeah.net
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaojing ZHANG
Beibei CHEN
Kunchao LEI
Wenfeng CHEN
Mingliang GAO
Chaofan ZHOU
Guangyao DUAN
Cite this article:   
Xiaojing ZHANG,Beibei CHEN,Kunchao LEI, et al. Characteristics of land subsidence along Beijing-Tianjin inter-city railway (Beijing section)[J]. Remote Sensing for Land & Resources, 2019, 31(1): 171-179.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.23     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/171
Fig.1  Location of the study area
Fig.2  Site of BTIR ,the location of level points and annual mean land subsidence in the study area by StaMPS
Fig.3  Comparison between the subsidence results measured by InSAR techniques and leveling value
Fig.4  Temporal evolution of land subsidence rate and cumulative annual settlement during 2011-2015 along the BTIR
年份 2011年 2012年 2013年 2014年 2015年
最大年均沉降速
率/(mm·a-1)
-100.85 -74.10 -79.10 -77.69 -69.85
Tab.1  Maximum annual subsidence rate of BTIR (Beijing section) during 2011—2015
Fig.5  Wavelet transform of diving and land subsidence
Fig.6  First pressure water and ground subsidence wavelet transform
Fig.7  Second confined water and ground subsidence wavelet transform
数据 变换时段 交叉相位角/rad 时间间
隔/月
潜水 2012—2013.5 3.123 9±0.011 9 4.24
第一承压水 2012.5—2013.5 1.093 7±0.706 0 9.41
第二承压水 2011—2011.5 1.566 7±0.412 7 6.35
第二承压水 2012.8—2013.5 0.756 0±0.539 5 10.76
Tab.2  Cross phase and time interval of groundwater information and land subsidence information
Fig.8  Thickness of compressible clay along the railway, and overlay with PS point
Fig.9  Statistical analysis of land subsidence in different thickness of compressible layer
[1] 汪珊, 张彤, 黄大英 , 等. 北京市地下水合理开发与保护[C]// 地下水开发利用与污染防治技术专刊. 2009: 52-56.
[1] Wang S, Zhang T, Huang D Y , et al. The rational utlization and protection of groundwater in Beijing[C]// Special Issue of Groundwater Development and Utilization and Pollution Control Technology, 2009: 52-56.
[2] Yang Y, Jia S . Situation and countermeasures of prevention & control on land subsidence in Beijing[J]. Urban Geology, 2013,8(4):6-10.
[3] Duan G Y, Gong H L, Liu H H , et al. Monitoring and analysis of land subsidence along Beijing-Tianjin inter-city railway[J]. Journal of the Indian Society of Remote Sensing, 2016,44(6):1-17.
doi: 10.1007/s12524-015-0448-2 url: http://link.springer.com/10.1007/s12524-015-0448-2
[4] 袁怀宇 . 公路工程中沉降板的应用[J]. 东北公路, 2003,26(2):79-80.
url: http://www.cnki.com.cn/Article/CJFDTotal-DBGL200302029.htm
[4] Yuan H Y . Settlement plate employing in highway engineering[J]. Northeastern Highway, 2003,26(2):79-80.
[5] 花梅 . 高速铁路路基常用沉降变形监测方法浅析[J]. 铁道标准设计, 2014,58(s1):122-125.
doi: 10.13238/j.issn.1004-2954.2014.S.036 url: http://www.cnki.com.cn/Article/CJFDTotal-TDBS2014S1037.htm
[5] Hua M . Analysis of common settlement deformation monitoring methods for subgrade of high speed railway[J]. Railway Standard Design, 2014,58(s1):122-125.
[6] Tarchi D, Rudolf H, Luzi G, et al. SAR interferometry for structural changes detection:A demonstration test on a dam[C]// Internationl Geoscience and Remote Sensing Symposium.IEEE, 1999.
[7] Ge D Q, Zhang L, Wang Y, et al. Merging multi-track PSI result for land subsidence mapping over very extended area[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2010: 3522-3525.
[8] 冷长明 . 高速铁路地基不均匀沉降的因素及机理分析[J]. 高速铁路技术, 2011,2(3):5-8.
doi: 10.3969/j.issn.1674-8247.2011.03.002 url: http://d.wanfangdata.com.cn/Periodical/gstljs201103002
[8] Leng C M . Analysis of the factor and mechanism of uneven settlement of high-speed raiway subgrade[J]. High Speed Railway Technology, 2011,2(3):5-8.
[9] 高亮, 赵磊, 曲村 , 等. 路基上CRTSⅢ型板式无砟轨道设计方案比较分析[J]. 同济大学学报(自然科学版), 2013,41(6):848-855.
doi: 10.3969/j.issn.0253-374x.2013.06.008 url: http://www.cnki.com.cn/Article/CJFDTotal-TJDZ201306010.htm
[9] Gao L, Zhao L, Qu C , et al. Analysis on design scheme of CRTSⅢ slab track structure on road[J]. Journal of Tongji University (Natural Science), 2013,41(6):848-855.
[10] 刘晓龙, 张永红, 李英会 , 等, 基于时间序列TerraSAR-X影像的线状地物沉降监测试验研究[J]. 遥感信息, 2013,28(4):57-62.
doi: 10.3969/j.issn.1000-3177.2013.04.010 url: http://d.wanfangdata.com.cn/Periodical/ygxx201304010
[10] Liu X L, Zhang Y H, Li Y H , et al. Exploration of subsidence along linear engineering structures on time series of TerraSAR-X images[J]. Remote Sensing Information, 2013,28(4):57-62.
[11] 王荣, 杨艳, 田芳 , 等. 高速铁路区域地面沉降监测体系构建[J]. 上海国土资源, 2014,35(2):17-20.
doi: 10.3969/j.issn.2095-1329.2014.02.005 url: http://www.cnki.com.cn/Article/CJFDTotal-SHAD201402005.htm
[11] Wang R, Yang Y, Tian F , et al. Construction of a monitoring system for regional land subsidence affecting high-speed railways[J]. Shanghai Land and Resources, 2014,35(2):17-20.
[12] 贾三满, 王海刚, 赵守生 , 等. 北京地面沉降机理研究初探[J]. 城市地质, 2007,2(1):20-26.
doi: 10.3969/j.issn.1007-1903.2007.01.005 url: http://www.cnki.com.cn/Article/CJFDTotal-CSDZ200701005.htm
[12] Jia S M, Wang H G, Zhao S H , et al. A tentative study of the mechanism of land subsidence in Beijing[J]. City Geology, 2007,2(1):20-26.
[13] 陈蓓蓓 . 北京市典型地区地面沉降演化过程与机理分析[M]. 北京: 中国环境出版社, 2015.
[13] Chen B B. The Evolution Process and Mechanism of Land Subsidence in Typical Area,Beijing[M]. Beijing: China Environmental Science Press, 2015.
[14] Hooper A J . Persistent Scatter Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation[D]. Stanford:Stanford University, 2006.
[15] 刘一霖, 张勤, 黄海军 , 等. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017,29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
doi: 10.6046/gtzyyg.2017.02.21 url: http://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201702021.htm
[15] Liu Y L, Zhang Q, Huang H J , et al. Monitoring and analysis large scale land subsidence over the mining area using small baseline subset InSAR[J]. Remote Sensing for Land and Resources, 2017,29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
[16] 刘志敏, 李永生, 张景发 , 等. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014,26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06 url: http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201403008
[16] Liu Z M, Li Y S, Zhang J F et al. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. Remote Sensing for Land and Resources, 2014,26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
[17] 王文圣, 丁晶, 向红莲 . 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 2002,13(4):515-520.
doi: 10.3321/j.issn:1001-6791.2002.04.021 url: http://www.cqvip.com/Main/Detail.aspx?id=6594211
[17] Wang W S, Ding J, Xiang H L . Application and prospect of wavelet analysis in hydrology[J]. Advances in Water Science, 2002,13(4):515-520.
[18] 郭良迁, 薄万举, 杨国华 . 华北地区断裂带的现代形变特征[J]. 大地测量与地球动力学, 2003,23(2):29-36.
doi: 10.3969/j.issn.1671-5942.2003.02.005 url: http://d.wanfangdata.com.cn/Periodical/dkxbydz200302005
[18] Guo L Q, Bo W J, Yang G H . Characteristics of current deformation of fault beltisin north China[J]. Journal of Geodesy and Geodynamics, 2003,23(2):29-36.
[19] 林健 . 北京市城近郊区地下水污染演变分析研究[D]. 长春:吉林大学, 2004.
[19] Lin J . The Analysis of Pollution History for the Groundwater in Urban and Suburb Area of Beijing[D]. Changchun: Jilin University, 2004.
[20] 罗勇 . 北京地面沉降发展新趋势初步分析[J]. 上海国土资源, 2017,38(2):13-17.
doi: 10.3969/j.issn.2095-1329.2017.02.004 url: http://d.wanfangdata.com.cn/Periodical/shdz201702004
[20] Luo Y . Research on the new trends of Beijing land subsidence[J]. Shanghai Land and Resources, 2017,38(2):13-17.
[21] Grinsted A, Moore J C, Jevrejeva S . Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004,11(5/6):561-566.
doi: 10.5194/npg-11-561-2004 url: http://www.nonlin-processes-geophys.net/11/561/2004/
[22] 姜媛, 杨艳, 王海刚 , 等. 北京平原区地面沉降的控制与影响因素[J]. 上海国土资源, 2014,26(4):130-133.
doi: 10.3969/j.issn.2095-1329.2014.04.031 url: http://www.cnki.com.cn/Article/CJFDTotal-SHAD201404033.htm
[22] Jiang Y, Yang Y, Wang H G , et al. Factors controlling land subsidence on the Beijing plain[J]. Shanghai Land and Resources. 2014,26(4):130-133.
[1] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[2] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[3] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[4] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
[5] WANG Baocun, ZHU Lin, PAN Deng, GUO Lingfei, PENG Peng. Research on temporal and spatial evolution law of land subsidence in Zhengzhou[J]. Remote Sensing for Land & Resources, 2020, 32(3): 143-148.
[6] Yike SUN, Huili GONG, Beibei CHEN, Chaofan ZHOU, Wenfeng CHEN, Xiaojing ZHANG. Quantitative analysis of uneven subsidence by Moran’s I and cross wavelet[J]. Remote Sensing for Land & Resources, 2020, 32(2): 186-195.
[7] Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
[8] WANG Xuqing, WANG Yu, GUO Yingping. Application of ZY1-02C satellite data to the survey of groundwater overflow zone in the front of alluvial-pluvial fan zone of Golmud River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 155-159.
[9] CHEN Jiwei, ZENG Qiming, JIAO Jian, ZHAO Binchen. SBAS time series analysis technique based on Sentinel-1A TOPS SAR images: A case study of Yellow River Delta[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 82-87.
[10] LI Man, GE Daqing, ZHANG Ling, LIU Bin, GUO Xiaofang, WANG Yan. Characteristics and influencing factors of land subsidence in Caofeidian Newly-developed Area based on PSInSAR technique[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 119-126.
[11] YANG Chengsheng, LIU Yuanyuan, AO Meng. Study of land subsidence and groundwater activity using SBAS time-series analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 127-132.
[12] WANG Yan, ZHANG Ling, GE Daqing, ZHANG Xuedong, LI Man. Experimental study of vertical and horizontal displacement retrieval by joint analysis of ascending and descending PSInSAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 97-102.
[13] GE Daqing, YIN Yueping, WANG Yan, ZHANG Ling, GUO Xiaofang, WANG Yi. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique:A case study of Dezhou, Shandong[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 103-109.
[14] LUO Hao, WANG Hong, SHI Changhui. Retrieving groundwater in Yellow River Delta area using remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 145-152.
[15] YU De-Hao, LONG Fan, FANG Hong-Bin, HAN Tian-Cheng. Research on Shallow Groundwater Information Extraction Based on Data Fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech