Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 156-163     DOI: 10.6046/gtzyyg.2019.01.21
|
Research on the macro-characteristics of the sedimentation in the middle reach of Chaobai River based on remote sensing
Jing ZHANG1, Dongli JI2, Yaonan BAI1, Jinjie MIAO1, Xu GUO1, Dong DU1, Yandong PEI1
1.Tianjin Centre, China Geological Survey, Tianjin 300170, China
2.School of Environmental and Municipal Engineering, Tianjin Urban Construction College, Tianjin 300384, China
Download: PDF(6558 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

According to the reflectance spectroscopy of remote sensing (RS) data of field sandy soil and cohesive soil, the shallow sedimentary framework in the middle reach of Chaobai River (MRCR) was interpreted and proved by sediment cores. Considering regional and vertical variation, the authors investigated the macro-characteristics of the sedimentation in the MRCR. The results show that early mid-low spatial resolution Landsat TM data are effective in identifying sandy soil and cohesive soil, and the two kinds of soil have obviously different colors in B7(R), B4(G)and B1(B), and the change of grain size can be reflected by color saturation. The shallow sediment cores are in good agreement with RS interpretation. Finally, the shallow deposits can be divided into five parts: the left floodplain, the recent riverbed, the right floodplain, the paleo-river and the flood lowland. Among them, paleo-rivers are developed in shallow layer as lenses, while the other parts exhibit inherited development at the depth of 20 m and shift with the river swinging.

Keywords Chaobai River      remote sensing      Landsat TM      sedimentation      borehole     
:  TP79  
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing ZHANG
Dongli JI
Yaonan BAI
Jinjie MIAO
Xu GUO
Dong DU
Yandong PEI
Cite this article:   
Jing ZHANG,Dongli JI,Yaonan BAI, et al. Research on the macro-characteristics of the sedimentation in the middle reach of Chaobai River based on remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 156-163.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.21     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/156
Fig.1  Location and geological conditions of study area
Fig.2  Multi temporal remote sensing images of study area
Fig.3  Curve of the reflectance spectrum of the field sandy soil and cohesive soil
Fig.4  Calculated channel sand body
Fig.5  Interpreted shallow sediment and the location of boreholes and profile
沉积体
孔号 DC01
DC07
DC15
DC25
DC26
XH16 DC13
DC19
DC20
DC27
DC02
DC12
DC16
DC29
DC04
DC14
DC18
DC23
Tab.1  Deployment of the boreholes
Fig.6  Drill columns in different sedimentary deposits
Fig.7  Shallow sedimentary facies of W-E direction in the middle reaches of Chaobai River
Fig.8  Remote sensing image and field photos of typical sedimentary facies
[1] 尤联元 . 潮白河流域古侵蚀环境[J]. 泥沙研究, 1985(4):12-21.
url: http://www.cnki.com.cn/Article/CJFDTotal-NSYJ198504002.htm
[1] You L Y . A study on the paleoerosion environment of the Chaobaihe River Basin[J]. Journal of Sediment Research, 1985(4):12-21.
[2] 刘记来, 庞忠和, 王素芬 , 等. 近30年来降水量变化和人类活动对北京潮白河冲洪积扇地下水动态的影响[J]. 第四纪研究, 2010,30(1):138-144.
doi: 10.3969/j.issn.1001-7410.2010.01.13 url: http://d.wanfangdata.com.cn/Periodical/dsjyj201001013
[2] Liu J L, Pang Z H, Wang S F , et al. Impact of precipitation change and human activities on groundwater regime in the Chaobaihe alluvialand diluvial fan in Beijing in the last 30 years[J]. Quaternary Sciences, 2010,30(1):138-144.
[3] 郭岭, 姜在兴, 徐杰 . 现代潮白河岩相与沉积相特征[J]. 岩性油气藏, 2011,23(1):57-61.
doi: 10.3969/j.issn.1673-8926.2011.01.010
[3] Guo L, Jiang Z X, Xu J . Sedimentary facies and lithofacies characteristics of modern Chaobai River[J]. Lithologic Reservoirs, 2011,23(1):57-61.
[4] 吴忱 . 华北地貌环境及其形成演化[M]. 北京: 科学出版社, 2008: 79-81.
[4] Wu C. Landform Environment and Its Formation in North China[M]. Beijing: Science Press, 2008: 79-81.
[5] 吴忱 . 华北平原古河道研究[M]. 北京: 中国科学技术出版社, 1991: 2-4.
[5] Wu C. A Study of Ancient Channels on North China Plain[M]. Beijing: Science and Technology of China Pres, 1991: 2-4.
[6] 刘智荣, 沈军, 黄静宜 , 等. 河北三河晚更新世地层粒度特征分析[J]. 地质学报, 2016,90(5):997-1005.
[6] Liu Z R, Shen J, Huang J Y , et al. Grain size analysis of the Late Pleistocene sediments in Sanhe County,Hebei Province[J]. Acta Geologica Sinica, 2016,90(5):997-1005.
[7] 郭峰, 郭岭, 姜在兴 , 等. 潮白河现代沉积特征与沉积模式[J]. 大庆石油学院学报, 2010,34(2):7-10.
doi: 10.3969/j.issn.2095-4107.2010.02.002 url: http://www.cqvip.com/Main/Detail.aspx?id=33798923
[7] Guo F, Guo L, Jiang Z X , et al. Sedimentary characteristics and depositional model of modern Chaobai River[J]. Journal of Daqing Petroleum Institute, 2010,34(2):7-10.
[8] Legleiter C J, Stegman T K, Overstreet B T . Spectrally based mapping of riverbed composition[J]. Geomorphology, 2016,264:61-79.
doi: 10.1016/j.geomorph.2016.04.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0169555X16301660
[9] Rainey M P, Tyler A N, Gilvear D J , et al. Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing[J]. Remote Sensing of Environment, 2003,86(4):480-490.
doi: 10.1016/S0034-4257(03)00126-3 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425703001263
[10] Thunell R, Pride C, Tappa E, et al. Varve formation in the Gulf of California:Insights from time series sediment trap sampling and remote sensing[J]. Quaternary Science Reviews, 1993,12(6):451-464.
doi: 10.1016/S0277-3791(05)80009-5 url: https://linkinghub.elsevier.com/retrieve/pii/S0277379105800095
[11] 濮静娟 . 应用遥感图象研究河床演变[J]. 地理科学, 1984,4(3):235-242,293.
url: http://www.cnki.com.cn/Article/CJFDTotal-DLKX198403005.htm
[11] Pu J J . An application of remote sensing imagery to the investigation of river channel changes[J]. Scientia Geographica Sinica, 1984,4(3):235-242,293.
[12] 孙仲明 . 历史时期水系变迁的遥感分析方法[J]. 地域研究与开发, 1984(1):1-12.
url: http://www.cnki.com.cn/Article/CJFDTotal-DYYY198401000.htm
[12] Sun Z M . Remote sensing analysis method of river system changes in historical period[J]. Areal Research and Development, 1984(1):1-12.
[13] 王燕飞 . 最近40年来丁字湾潮滩表层沉积特征演变的遥感定量反演[D]. 烟台:鲁东大学, 2013.
[13] Wang Y F . Quantitative Remote Sensing Inversion of Characteristics of Surface Sediment on the Intertidal Flat of Dingzi Bay in the Last 40 Years[D]. Yantai:Ludong University, 2013.
[14] 马世忠, 张永清 . 应用遥感信息图像研究现代水下分流河道河流类型[J]. 地学前缘, 2012,19(2):24-31.
url: http://d.wanfangdata.com.cn/Periodical/dxqy201202005
[14] Ma S Z, Zhang Y Q . Research on the channel pattern of present subaqueous distributary channel by remote sensing image[J]. Earth Science Frontiers, 2012,19(2):24-31.
[15] 张福堂 . 永定河冲积扇及古河道在卫星图象上的显示特征[J]. 水文地质工程地质, 1986(1):53-54.
url: http://www.cnki.com.cn/Article/CJFDTotal-SWDG198601019.htm
[15] Zhang F T . The display features of the alluvial fan and the ancient channel in the Yongding River on remote sensing images[J]. Hydrogeology and Engineering Geology, 1986(1):53-54.
[16] 濮静娟 . 遥感遥测资料在河床演变研究方面的应用[J]. 泥沙研究, 1982(3):25-32.
url: http://www.cnki.com.cn/Article/CJFDTotal-NSYJ198203002.htm
[16] Pu J J . Application of remote sensing in the investigations of river channel changes[J]. Journal of Sediment Research, 1982(3):25-32.
[17] 安国英 . 遥感技术在新生代水文地质调查中的应用:以喀喇昆仑山温泉幅1:25万区域水文地质调查为例[J]. 现代地质, 2013,27(6):1445-1453.
doi: 10.3969/j.issn.1000-8527.2013.06.024 url: http://d.wanfangdata.com.cn/Periodical_xddz201306024.aspx
[17] An G Y . Application of satellite remote sensing in regional hydrogeological investigation:Taking Cenozoic Strata in wenquan sheet (1:250000) of Karakoram range as an example[J]. Geoscience, 2013,27(6):1445-1453.
[18] 田优平, 余达远, 万永革 , 等. 三河—平谷地震区地球物理特征研究[J]. 地球物理学进展, 2014,29(4):1563-1572.
doi: 10.6038/pg20140410 url: http://www.cqvip.com/QK/98047X/201404/663621642.html
[18] Tian Y P, Yu D Y, Wan Y G , et al. Research on the geophysical characteristics of Sanhe-Pinggu earthquake region[J].Progress in Geophysics (in Chinese), 29(4):1563-1572
[19] 姜在兴 . 沉积学[M]. 北京: 石油工业出版社, 2003: 282-291.
[19] Jiang Z X. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 282-291.
[20] 胡镜荣, 石凤英 . 华北平原古河道发育的环境条件及其沉积特征[J]. 地理研究, 1983,2(4):48-59.
doi: 10.11821/yj1983040006 url: http://www.cnki.com.cn/Article/CJFDTotal-DLYJ198304005.htm
[20] Hu J R, Shi F Y . The environmental conditions of the development of paleoghannels in the Hua Bei(North China) Plain and their sedimental characteristics[J]. Geographical Research, 1983,2(4):48-59.
[21] Sobrino J A , Jiménez-Muñoz J C,Paolini L.Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sensing of Environment, 2004,90(4):434-440.
doi: 10.1016/j.rse.2004.02.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704000574
[22] 梅安新, 彭望琭, 秦其明 , 等. 遥感导论[M]. 北京: 高等教育出版社, 2001: 225-228.
[22] Mei A X, Peng W L, Qin Q M , et al. An Introduction to Remote Sensing[M]. Beijing: Higher Education Press, 2001: 225-228.
[23] 成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1978: 44-53.
[23] Northern Shaanxi team of Chengdu College of Geology. Grain Size Analysis of Sediment and Its Application[M]. Beijing: The Geological Publishing House, 1978: 44-53.
[24] 张凌华, 张振克 . 河漫滩沉积与环境研究进展[J]. 海洋地质与第四纪地质, 2015,35(5):153-163.
url: http://www.cqvip.com/QK/96122X/201505/666617617.html
[24] Zhang L H, Zhang Z K . Research progress of river overbank deposits and implications for environment[J]. Marine Geology and Quaternary Geology, 2015,35(5):153-163.
[25] 黄操明, 周安朝, 王丽清 . 试论含煤盆地构造的继承性及砂体对煤灰分的控制[J]. 沉积学报, 1995,13(1):102-109.
doi: 10.1088/0256-307X/12/7/010 url: http://www.cqvip.com/Main/Detail.aspx?id=1702628
[25] Huang C M, Zhou A C, Wang L Q . A discussion on the structural heredity of coal-bearing basin and sandbody’s control on coal ash composition[J]. Acta Sedimentologica Sinica, 1995,13(1):102-109.
[26] 吴根耀, 梁兴, 陈方鸿 . 鄂尔多斯断块新生构造的继承性发育及对油气勘探的启示[J]. 现代地质, 2009,23(4):595-606.
doi: 10.3969/j.issn.1000-8527.2009.04.003 url: http://d.wanfangdata.com.cn/Periodical/xddz200904003
[26] Wu G Y, Liang X, Chen F H . Inheritance developing of neogenic structures in the Ordos Fault-block and its inspirations for oil-gas exploration[J]. Geoscience, 2009,23(4):595-606.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech