Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (3) : 136-143     DOI: 10.6046/gtzyyg.2015.03.22
Technology Application |
Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe
LIU Dechang1, TONG Qinlong1, LIN Ziyu2, YANG Guofang1
1. National Key Laboratory of Remote Sensing Information and Image Analysis Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China;
2. East China Institute of Technology, School of GeoSciences, Fuzhou 344000, China
Download: PDF(16945 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to study basic geology and distruibution regularity of mineral resources in Europe, the authors used Landsat ETM+ data as the main information source in this study and, by means of remote sensing information technology, investigated characteristics of remote sensing images of Europe. On the basis of remote sensing geological interpretation of strata, rock mass and structure, combined with relevant data of geology and mineral resources, the authors employed the remote sensing interpretation map of geology and mineral resources of Europe at the scale of 1:5 000 000 and some other maps, and found some new geological bodies and different phenomena. Then the authors put forward some new opinions concerning basic geology and mineral distribution regularity in Europe. Finally, eight strategic areas which are beneficial to mineral exploration were delineated. All these achirvements provide a first-choice objective support for overseas investment and following geological mineral exploration in Europe.
Keywords SPOT6      ortho-rectification      image fusion      band combination     
:  TP79  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Shibin
YANG Wenfang
ZHANG Kun
Cite this article:   
MA Shibin,YANG Wenfang,ZHANG Kun. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 136-143.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.03.22     OR     https://www.gtzyyg.com/EN/Y2015/V27/I3/136
[1] 李国玉,金之钧.世界含油气盆地图集[M].北京:石油工业出版社,2005. Li G Y,Jin Z J.World Atlas of Oil and Gas Basins[M].Beijing:Petroleum Industry Press,2005.
[2] Ager D V.The Geology of Europe[M].London:McGraw-Hill Book Company(UK)Limited,1980.
[3] 朱伟林,杨甲明,杜栩,等.欧洲含油气盆地[M].北京:科学出版社,2011. Zhu W L,Yang J M,Du X,et al.Oil and Gas Basin in Europe[M].Beijing:Science Press,2011.
[4] 梅艳雄,裴荣富,杨德凤,等.全球成矿域和成矿区带[J].矿床地质,2009,28(4):383-389. Mei Y X,Pei R F,Yang D F,et al.Global metallogenic domains and districts[J].Mineral Deposits,2009,28(4):383-389.
[5] 郝敏,吴虹,贾志强,等.基于断裂构造遥感影像特征对比分析的花山岩体与姑婆山岩体成因关联性探讨[J].国土资源遥感,2014,26(2):162-169.doi:10.6046/gtzyyg.2014.02.26. Hao M,Wu H,Jia Z Q,et al.Discussion on genetic correlation between Huashan granite body and Guposhan granite body based on comparative analysis of fault structure features in remote sensing image[J].Remote Sensing for Land and Resources,2014,26(2):162-169.doi:10.6046/gtzyyg.2014.02.26.
[6] 钟江文,彭翼.小秦岭地区遥感线性构造密集带与金矿关系分析及找矿预测[J].国土资源遥感,2014,26(2):148-153.doi:10.6046/gtzyyg.2014.02.24. Zhong J W,Peng Y.Analysis of relationship between belts of concentrated remote sensing linear structures and gold deposits as well as prospecting prognosis in Xiaoqinling region[J].Remote Sensing for Land and Resources,2014,26(2):148-153.doi:10.6046/gtzyyg.2014.02.24.
[7] 钱建平,张渊,赵小星,等.内蒙古东乌旗遥感构造和蚀变信息提取与找矿预测[J].国土资源遥感,2013,25(3):109-117.doi:10.6046/gtzyyg.2013.03.19. Qian J P,Zhang Y,Zhao X X,et al.Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner,Inner Mongolia[J].Remote Sensing for Land and Resources,2013,25(3):109-117.doi:10.6046/gtzyyg.2013.03.19.
[8] 王锋德,赵志芳,毛雨景,等.云南绿春地区遥感地质特征与找矿远景综合分析[J].国土资源遥感,2012,24(2):98-104.doi:10.6046/gtzyyg.2012.02.18. Wang F D,Zhao Z F,Mao Y J,et al.A comprehensive analysis of remote sensing geological haracteristics and ore prospecting perspective of Luchuan area, Yunnan province[J].Remote Sensing for Land and Resources,2012,24(2):98-104.doi:10.6046/gtzyyg.2012.02.18.
[9] 况忠,龙胜清,曾禹人,等.黔西南地区遥感构造与金矿的关系及找矿预测[J].国土资源遥感,2012,24(1):160-165.doi:10.6046/gtzyyg.2012.01.28. Kuang Z,Long S Q,Zeng Y R,et al.The relationship between remote sensing structures and gold deposits and ore-prospecting prognosis in southwest Guizhou[J].Remote Sensing for Land and Resources,2012,24(1):160-165.doi:10.6046/gtzyyg.2012.01.28.
[10] Gault D E,Quaide W L,Oberbeck V R.Impact cratering mechanicsand structures[C]//NASA Ames Research Center.A Prmier in Lunar Geology.1974:177-189.
[11] Malkovsk M.The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution[J].Tectonophysics,1987,137(1/4):31-42.
[12] Ziegler P A,Dèzes P.Cenozoic uplift of Variscan Massifs in the Alpine foreland:Timing and controlling mechanisms[J].Global and Planetary Change,2007,58(1/4):237-269.
[13] 李田港.波希米亚地块铀矿床(一)[J].国外铀金地质,1995,12(4):289-297. Li T G.Uramium deposits in the Bohemian massif(一)[J].Overseas Uranium and Gold Geology,1995,12(4):289-297.
[14] 温泉波,郑培玺,刘永江,等.欧洲大陆含油气盆地基础地质研究[J].海洋地质前沿,2011,27(12):70-77. Wen Q B,Zheng P X,Liu Y J,et al.Geology of the European petroliferous basins[J]. Marine Geology Frontiers,2011,27(12):70-77.
[15] 米兰诺夫斯基E E.俄罗斯及其毗邻地区地质[M].陈正译.北京:地质出版社,2010. Милановскнй E E.The Geology in Russia and Adjacent Region[M].Translated by Chen Z.Beijing:Geological Publishing House,2010.
[1] Zhenyu SHEN, Xiaohong GAO, Min TANG. Comparison and accuracy verification for atmospheric correction of SPOT6 image in high altitude complex terrain area[J]. Remote Sensing for Land & Resources, 2020, 32(1): 81-89.
[2] Honge FENG, Jiaguo LI, Yunfang ZHU, Qijin HAN, Ning ZHANG, Shufang TIAN. Synergistic inversion method of chlorophyll a concentration in GF-1 and Landsat8 imagery: A case study of the Taihu Lake[J]. Remote Sensing for Land & Resources, 2019, 31(4): 182-189.
[3] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[4] MA Ruiqi, CHENG Bo, LIU Xu’nan, LIU Yueming, JIANG Wei, YANG Chen. Research on GF-1 remote sensing IHS image fusion algorithm based on compressed sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 26-32.
[5] YIN Feng, CAO Liqin, Liang Peng. Application of improved Welsh’s color transfer algorithm to GF-2 image fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 126-131.
[6] LI Penglong, DING Yi, HU Yan, LUO Ding, DUAN Songjiang, SHU Wenqiang. A method for rapid UAV images mosaicking based on GPU parallel computing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 57-63.
[7] JINAG Wei, HE Guojin, LIU Huichan, LONG Tengfei, WANG Wei, ZHENG Shouzhu, MA Xiaoxiao. Research on China’s land image mosaicking and mapping technology based on GF-1 satellite WFV data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 190-196.
[8] FU Ying, GUO Qiaozhen, PAN Yingyang, WANG Dongchuan. Research on building extraction rules based on SPOT6 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 65-69.
[9] JINAG Wei, HE Guojin, LONG Tengfei, YIN Ranyu, SONG Xiaolu, YUAN Yiqin, LING Saiguang. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 211-216.
[10] LI Chengyi, TIAN Shufang. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 50-56.
[11] SUN Pan, DONG Yusen, CHEN Weitao, MA Jiao, ZOU Yi, WANG Jinpeng, CHEN Hua. Research on fusion of GF-2 imagery and quality evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 108-113.
[12] YANG Baolin, LYU Tingting, WANG Shaojun, ZHANG Zhi. Ortho-rectification method for Pleiades satellite images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 25-29.
[13] MA Shibin, YANG Wenfang, ZHANG Kun. Study of key technology of SPOT6 satellite image processing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 30-35.
[14] LI Wenjing, WEN Wenpeng, WANG Qinghe. A study of remote sensing image fusion method based on Contourlet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 44-50.
[15] LIU Huifen, YANG Yingbao, YU Shuang, KONG Lingting, ZHANG Yong. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 63-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech