Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (4) : 63-70     DOI: 10.6046/gtzyyg.2014.04.11
Technology and Methodology |
Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images
LIU Huifen, YANG Yingbao, YU Shuang, KONG Lingting, ZHANG Yong
Hohai University, Nanjing 210098, China
Download: PDF(1120 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

ZY-3 and Landsat8 are new satellites lunched recently. In terms of the two kinds of images acquired by the two satellites, the applicability evaluation of the common fusion methods is insufficient. In this paper, the adaptability evaluation of the 6 fusion methods including wavelet transform(WT), Gram_Schimdt transform(G-S), principal component analysis (PCA), Pansharp and HIS for ZY-3 and Landsat8 image fusion was discussed, and the spectral information fidelity and spatial information integration were used to evaluate the quality of image fusion. The results of quality evaluation show that, in terms of spatial information integration, IHS transform is the best, followed by PCA, Brovey, G-S and WT, and Pansharp is the worst transform for ZY-3 image; G-S transform is the best, and Pansharp is the worst transform for Landsat8 image. Nevertheless, in terms of spectral information fidelity, PCA transform is the best, followed by IHS, G-S and Brovey, and WT is the worst transform for ZY-3 image, G-S transform is the best, followed by Pansharp and Brovey, and IHS, WT and PCA are worse transforms for Landsat8 image.

Keywords land surface temperature(LST)      inversion      temperal-spatial variation      normalized difference moisture index (NDMI)      normalized difference building index (NDBI)     
:  TP751.1  
Issue Date: 17 September 2014
E-mail this article
E-mail Alert
Articles by authors
WANG Yanhui
Cite this article:   
WANG Yanhui,XIAO Yao. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 63-70.
URL:     OR

[1] 沈涛,党安荣.遥感影像融合及高保真算法比较分析研究[J].微计算机信息,2010,26(14):1-3. Shen T,Dang A R.The research on comparing and analyzing the remote sensing image fusion and algorithm with high spectral and spatial quality[J].Control and Automatic Publication Group,2010,26(14):1-3.

[2] 王广杰,周介铭,杨存建,等.基于不同算法的遥感影像融合分析[J].四川师范大学学报:自然科学版,2011,34(2):255-259. Wang G J,Zhou J M,Yang C J,et al.Analysis of remote sensing image fusion based on different algorithms[J].Journal of Sichuan Normal University:Natural Science,2011,34(2):255-259.

[3] 孟京辉,陆元昌,刘刚,等.基于ETM+遥感图像的图像融合试验及评价方法[J].南京林业大学学报:自然科学版,2010,34(1):69-72. Meng J H,Lu Y C,Liu G,et al.Trial of image fusion methods and quality assessment for ETM+ image[J].Journal of Nanjing Forestry University:Natural Sciences Edition,2010,34(1):69-72.

[4] 谭永生,沈掌泉,贾春燕,等.中高分辨率遥感影像融合研究[J].遥感技术与应用,2007,22(4):536-542. Tan Y S,Shen Z Q,Jia C Y,et al.The study on image fusion for medium and high spatial resolution remote sensing images[J].Remote Sensing Technology and Application,2007,22(4):536-542.

[5] 张荣群,赵明,王志成,等.IHS方法在QuickBird数据融合中存在的问题及其改进[J].国土资源遥感,2007,19(3):36-39. Zhang R Q,Zhao M,Wang Z C,et al.The problem existent in the IHS method for QuickBird image fusion and the countermeasures for its improvement[J].Remote Sensing for Land and Resources,2007,19(3):36-39.

[6] 任琦,许有田,郭庆堂,等.QuickBird遥感影像数据处理方法的探讨[J].测绘科学,2009,34(s1):31-33. Ren Q,Xu Y T,Guo Q T,et al.The discussion of QuickBird remote sensing image data processing[J].Science of Surveying and Mapping,2009,34(s1):31-33.

[7] 马友平,冯仲科,何友均,等.基于ERDAS IMAGINE软件的快鸟影像融合研究[J].北京林业大学学报,2007,29(s2):181-184. Ma Y P,Feng Z K,He Y J,et al.QuickBird image fusion using ERDAS IMAGINE software[J].Journal of Beijing Forestry University,2007,29(s2):181-184.

[8] 徐胜祥,徐运清.基于Matlab的遥感图像融合效果的客观评价方法[J].测绘科学,2008,33(4):143-145. Xu S X,Xu Y Q.Objective evaluation method of fusion performance for remote sensing image based on Matlab[J].Science of Surveying and Mapping,2008,33(4):143-145.

[9] 赵珍梅,马伟,王润生.三种高保真遥感影像融合方法效果评价与分析[J].地质与勘探,2010,46(4):705-710. Zhao Z M,Ma W,Wang R S.Evaluation and analysis of three methods of fusing remote sensing images with high fidelity of spectral information[J].Geology and Exploration,2010,46(4):705-710.

[10] 韩闪闪,李海涛,顾海燕.高分辨率遥感影像融合研究[J].测绘科学,2009,34(5):60-62. Han S S,Li H T,Gu H Y.Study on image fusion for high spatial resolution remote sensing images[J].Science of Surveying and Mapping,2009,34(5):60-62.

[11] 樊旭艳,尹连旺,付春龙,等.QuickBird遥感影像数据融合方法研究[J].装备指挥技术学院学报,2006,17(3):81-85. Fan X Y,Yi L W,Fu C L,et al.Study on many fusion processing methods of QuickBird remote sensing image data[J].Journal of the Academy of Equipment Command and Technology,2006,17(3):81-85.

[12] 张玉君.Landsat 8简介[J].国土资源遥感,2013,25(1):176-177. Zhang Y J.Landsat8 introduction[J].Remote Sensing for Land and Resources,2013,25(1):176-177.

[13] 徐涵秋,唐菲.新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257. Xu H Q,Tang F.Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance[J].Acta Ecologica Sinica,2013,33(11):3249-3257.

[1] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[2] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[3] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[4] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[5] Chong YANG, Guoxiang LIU, Bing YU, Bo ZHANG, Rui ZHANG, Xiaowen WANG. Inversion of reservoir parameters in Shuguang Oil Production Plant of the Liaohe Oilfield based on InSAR deformation[J]. Remote Sensing for Land & Resources, 2020, 32(1): 209-215.
[6] Honge FENG, Jiaguo LI, Yunfang ZHU, Qijin HAN, Ning ZHANG, Shufang TIAN. Synergistic inversion method of chlorophyll a concentration in GF-1 and Landsat8 imagery: A case study of the Taihu Lake[J]. Remote Sensing for Land & Resources, 2019, 31(4): 182-189.
[7] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[8] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[9] Jun LI, Heng DONG, Xiang WANG, Lin YOU. Reconstructing missing data in soil moisture content derived from remote sensing based on optimum interpolation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 45-52.
[10] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[11] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[12] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[13] Kun LU, Qingyan MENG, Yunxiao SUN, Zhenhui SUN, Linlin ZHANG. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
[14] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
[15] ZHAO Feifei, BAO Nisha, WU Lixin, SUN Rui. Retrieving land surface temperature and soil moisture from HJ-1B data: A case study of Yimin open-cast coal mine region in Hulunbeier grassland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 1-9.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech