Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 26-32     DOI: 10.6046/gtzyyg.2017.04.05
Research on GF-1 remote sensing IHS image fusion algorithm based on compressed sensing
MA Ruiqi1, CHENG Bo2, LIU Xu’nan3, LIU Yueming2,4, JIANG Wei2,4, YANG Chen5
1. School of Lisiguang, China University of Geosciences(Wuhan), Wuhan 430074, China;
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
3. National Marine Hazard Mitigation Service, Beijing 100194, China;
4. University of Chinese Academy of Sciences, Beijing 100049,China;
5. Faculty of Information Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China
Download: PDF(19299 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  According to characteristics of GF-1 remote sensing images with high spatial resolution, the authors used compressed sensing theory to improve the traditional IHS image fusion algorithm. The component I from IHS transform and panchromatic images used sparse matrix and measure matrix, the weighted average and OMP yielded new component I'. Finally, through an inverse IHS transform the result image was obtained. Combined with five quantitative indexes, analysis and evaluation were conducted. Experimental results show that, compared with the traditional methods, IHS fusion algorithm combined with compression perception can obtain a higher and less distorted correlation coefficient, and the fusion results not only have higher spatial information richness, but also maintain the color information of multi-spectral images. It may provide a reference to GF-1 image visual solutions for translation and image classification.
Keywords wetland      remote sensing      change analysis      ecological environment     
:  TP751.1  
Issue Date: 04 December 2017
E-mail this article
E-mail Alert
Articles by authors
ZHU Boqin
TONG Xiaowei
YUE Yuemin
GAN Huayang
WAN Sida
Cite this article:   
LI Ru,ZHU Boqin,TONG Xiaowei, et al. Research on GF-1 remote sensing IHS image fusion algorithm based on compressed sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 26-32.
URL:     OR
[1] 赵英石.遥感应用分析原理与方法[M].北京:科学出版社,2003:251-255.
Zhao Y S.Analysis Principle and Method of Remote Sensing Applications[M].Beijing:Science Press,2003:251-255.
[2] 肖化超,周 诠,郑小松.基于IHS变换和Curvelet变换的卫星遥感图像融合方法[J].华南理工大学学报(自然科学版),2016,44(1):58-64.
Xiao H C,Zhou Q,Zheng X S.A fusion method of satellite remote sensing image based on IHS transform and Curvelet transform[J].Journal of South China University of Tchenology(Natural Science Edition),2016,44(1):58-64.
[3] 吴粉侠,李 红,李洪星.基于NSCT变换和PCA的图像融合算法[J].航空计算技术,2015,45(3):47-51.
Wu F X,Li H,Li H X.Image fusion algorithm based on NSCT and PCA[J].Aeronautical Computing Technique,2015,45(3):47-51.
[4] Nunez J,Otazu X,Fors O,et al.Multiresolution-based image fusion with additive wavelet decomposition[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1204-1211.
[5] 吴连喜.用低通滤波器改进Brovey融合法[J].计算机应用研究,2010,27(11):4383-4385.
Wu L X.Improved Brovey transform by low-pass filter[J].Application Research of Computers,2010,27(11):4383-4385.
[6] 王慧贤,江万寿,雷呈强,等.光谱与空间局部相关的SVR影像融合方法[J].测绘学报,2013,42(4):508-515.
Wang H X,Jiang W S,Lei C Q,et al.A robust SVR image fusion method based on local spectral and spatial correlation[J].Acta Geodaetica et Cartographica Sinica,2013,42(4):508-515.
[7] Sun W H,Chen B,Messinger D W.Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images[J].Optical Engineering,2014,53(1):013107.
[8] 张 涛,刘 军,杨可明,等.结合Gram-Schmidt变换的高光谱影像谐波分析融合算法[J].测绘学报,2015,44(9):1042-1047.
Zhang T,Liu J,Yang K M,et al.Fusion algorithm for hyperspectral remote sensing image combined with harmonic analysis and Gram-Schmidt transform[J].Acta Geodaetica et Cartographica Sinica,2015,44(9):1042-1047.
[9] 王晓艳,刘 勇,蒋志勇.一种基于结构相似度的IHS变换融合算法[J].遥感技术与应用,2011,26(5):670-676.
Wang X Y,Liu Y,Jiang Z Y.An IHS fusion method based on structural similarity[J].Remote Sensing Technology and Application,2011,26(5):670-676.
[10] 袁林山,杜培军,王 莉,等.基于灰色绝对关联度边缘检测的多源遥感影像加权IHS融合[J].地理与地理信息科学,2008,24(3):11-15.
Yuan L S,Du P J,Wang L,et al.Weighted IHS fusion of multi-source remotely-sensed image based on edge detection using grey absolute correlation degree[J].Geography and Geo-Information Science,2008,24(3):11-15.
[11] 余先川,熊利平,张立保,等.基于Kurtosis-IHS的遥感影像融合[J].地质学刊,2014,38(3):380-386.
Yu X C,Xiong L P,Zhang L B,et al.Kurtosis-IHS based remote sensing image fusion[J].Journal of Geology,2014,38(3):380-386.
[12] 张荣群,赵 明,王志成,等.IHS方法在QuickBird数据融合中存在的问题及其改进[J].国土资源遥感,2007,19(3):36-38.doi:10.6046/gtzyyg.2007.03.08.
Zhang R Q,Zhao M,Wang Z C,et al.The problem existent in the IHS method for QuickBird image fusion and the countermeasures for its improvement[J].Remote Sensing for Land and Resources,2007,19(3):36-38.doi:10.6046/gtzyyg.2007.03.08.
[13] Luo X Y,Zhang J,Yang J Y,et al.Image fusion in compressed sensing[C]//Proceedings of the 2009 16th IEEE International Conference on Image Processing.Cairo:IEEE,2009:2205-2208.
[14] 郭 晶.基于压缩感知理论的卫星遥感图像融合算法研究[D].北京:北京交通大学,2013.
Guo J.Satellite Remote Sensing Image Fusion Based on Compressed Sensing[D].Beijing:Beijing Jiaotong University,2013.
[15] 王远淋.基于压缩感知的图像融合[D].哈尔滨:哈尔滨工程大学,2013.
Wang Y L.Image Fusion Based on Compressed Sensing[D].Harbin:Harbin Engineering University,2013.
[16] 宁寰宇,文亚洲.压缩感知理论简介[J].电子技术,2012,39(6):10-12.
Ning H Y,Wen Y Z.A brief introduction of compression sensing theory[J].Electronic Technology,2012,39(6):10-12.
[17] 胡 洋,习晓环,王 成,等.Pléiades卫星影像融合方法与质量评价[J].遥感技术与应用,2014,29(3):476-481.
Hu Y,Xi X H,Wang C,et al.Study on fusion methods and qulity assessment of Pléiades data[J].Remote Sensing Technology and Application,2014,29(3):476-481.
[18] 郭 蕾,杨冀红,史良树,等.SPOT6遥感图像融合方法比较研究[J].国土资源遥感,2014,26(4):71-77.doi:10.6046/gtzyyg.2014.04.12.
Guo L,Yang J H,Shi L S,et al.Comparative study of image fusion algorithms for SPOT6[J].Remote Sensing for Land and Resources,2014,26(4):71-77.doi:10.6046/gtzyyg.2014.04.12.
[19] 刘会芬,杨英宝,于 双,等.遥感图像不同融合方法的适应性评价——以ZY-3和Landsat8图像为例[J].国土资源遥感,2014,26(4):63-70.doi:10.6046/gtzyyg.2014.04.11.
Liu H F,Yang Y B,Yu S,et al.Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J].Remote Sensing for Land and Resources,2014,26(4):63-70.doi:10.6046/gtzyyg.2014.04.11.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] HE Chenlinqiu, CHENG Bo, CHEN Jinfen, ZHANG Xiaoping. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 105-110.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech