Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 108-113     DOI: 10.6046/gtzyyg.2016.04.17
Technology and Methodology |
Research on fusion of GF-2 imagery and quality evaluation
SUN Pan1, DONG Yusen2, CHEN Weitao2, MA Jiao1, ZOU Yi2, WANG Jinpeng1, CHEN Hua3
1. Faculty of Earth Sciences, China University of Geosciences(Wuhan), Wuhan 430074, China;
2. Faculty of Computer Science, China University of Geosciences(Wuhan), Wuhan 430074, China;
3. China Aero Geophysical Survey and Remote Sensing for Land and Resources, Beijing 100083, China
Download: PDF(5589 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

GaoFen-2 (GF-2) is the first sub-meter civilian optical remote sensing satellite of China configured with 0.81 m resolution panchromatic cameras and 3.24 m multi-spectral cameras. Researches on image fusion algorithm suitable for GF-2 would have great significance for improving the image quality and expanding the application scope of the satellite. Four GF-2 images covering Northeast China from November 22 to 27, 2014 were used in this paper. The authors compared the efficiency of five fusion algorithms, which include component transform (PCA), Gram-Schmidt (GS), modified-HIS transform, HPF and HCS transform algorithm. In order to quantitatively assess the quality of the fused images, the authors adopted the following steps: The authors first examined the visual qualitative result and then evaluated the correlation between the original multi-spectral and the fused images. The authors compared the fused image with the original image in degree of distortion and parts of the statistical parameters such as entropy, average grads and correlation coefficient of the various frequency bands. Finally, the authors performed a supervised classification for the fused images, and compared the accuracies of resulting images. The result shows that all the fusion techniques improve the resolution and the visual effect. The HCS and GS transform algorithm could not only achieve the best results but also have no limit to the number of bands, and hence it is the most suitable method for the GF-2 image fusion. The HPF method is next only to the HCS transform method in the spatial detail enhancement, but the spectral fidelity is the worst among the five image fusion algorithms. It is moderate for the performance of the PCA and modified-IHS transform method, and then these algorithms can provide backup for the GF-2 image fusion.

Keywords pixel homogeneous regions(PHR)      pixel shape index(PSI)      threshold      high spatial resolution remotely sensed imagery     
:  TP79  
Issue Date: 20 October 2016
E-mail this article
E-mail Alert
Articles by authors
YANG Qingshan
Cite this article:   
YANG Qingshan,ZHANG Hua. Research on fusion of GF-2 imagery and quality evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 108-113.
URL:     OR

[1] Pohl C,Van Genderen J L.Review article multisensor image fusion in remote sensing:Concepts,methods and applications[J].International Journal of Remote Sensing,1998,19(5):823-854.
[2] 王广亮,李英成,曾钰,等.ALOS数据像素级融合方法比较研究[J].测绘科学,2008,33(6):121-124. Wang G L,Li Y C,Zeng Y,et al. Comparison and analysis of pixel-level image fusion algorithms applicable to ALOS data[J].Science of Surveying and Mapping,2008,33(6):121-124.
[3] Kaczynski R,Donnay J P,Muller F.Satellite image maps of Warsaw in the scale 1:25,000[J].EARSeL Advances in Remote Sensing,1995,4(2):100-103.
[4] Zhang Y,Hong G.An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images[J].Information Fusion,2005,6(3):225-234.
[5] Tu T M,Hsu C L,Tu P Y,et al.An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(1):125-134.
[6] Tu T M,Huang P S,Hung C L,et al.A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery[J].IEEE Geoscience and Remote Sensing Letters,2004,1(4):309-312.
[7] Nikolakopoulos K G.Comparison of four different fusion techniques for IKONOS data[C]//Proceedings of 2004 IEEE International on Geoscience and Remote Sensing Symposium.Anchorage,Alaska,USA:IEEE,2004,4:2534-2537.
[8] 胥兵,方臣.ZY-102C星图像与ETM+图像融合方法及效果评价[J].国土资源遥感,2014,26(3):80-85.doi:10.6046/gtzyyg.2014.03.13. Xu B,Fang C.Data fusion methods of ZY-102C and ETM+ images and effect evaluation[J].Remote Sensing for Land and Resources,2014,26(3):80-85.doi:10.6046/gtzyyg.2014.03.13.
[9] Huang X,Wen D W,Xie J F,et al.Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite:From an information extraction perspective[J].IEEE Geoscience and Remote Sensing Letters,2014,11(4):753-757.
[10] 云成.高分二号卫星[J].卫星应用,2014(9):65. Yun C.GF-2 satellite[J].Satellite Application,2014(9):65.
[11] Chavez P S,Berlin G L,Sowers L B.Statistical method for selecting Landsat MSS ratios[J].Journal of Applied Photographic Engineering,1982,8(1):23-30.
[12] Yésou H,Besnus Y,Rolet J.Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery-a contribution to the study of geological structures[J].ISPRS Journal of Photogrammetry and Remote Sensing,1993,48(5):23-36.
[13] Shettigara V K.A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set[J].Photogrammetric Engineering and Remote Sensing,1992,58(5):561-567.
[14] Laben C A,Brower B V.Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:US,6011875[P].2000-01-04.
[15] 景娟娟,吕群波,周锦松,等.图像融合效果评价方法研究[J].光子学报,2007,36(S):313-317. Jing J J,Lyu Q B,Zhou J S,et al.Research on the assessment of fusion image[J].Acta Photonica Sinica,2007,36(S):313-317.
[16] Chavez P S Jr,Sides S C,Anderson J A.Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J].Photogrammetric Engineering and Remote Sensing,1991,57(3):295-303.
[17] 王华斌,李国元,张本奎,等.资源三号卫星影像融合算法对比分析[J].测绘科学,2015,40(1):47-51. Wang H B,Li G Y,Zhang B K,et al.Contrast and analysis of di-fferent fusion algorithms for ZY-3 satellite images[J].Science of Surveying and Mapping,2015,40(1):47-51.
[18] 黄鹤,冯毅,张萌,等.天绘一号卫星影像的融合及评价研究[J].测绘通报,2013(1):6-9. Huang H,Feng Y,Zhang M,et al.Research on fusion of mapping satellite-1 imagery and its evaluation[J].Bulletin of Surveying and Mapping,2013(1):6-9.
[19] Padwick C,Deskevich M,Pacifici F,et al.WorldView-2 pan-sharpening[C]//American Society for Photogrammetry and Remote Sensing Annual Conference.San Diego:[s.n.],2010.
[20] Klonus S,Ehlers M.Performance of evaluation methods in image fusion[C]//Proceedings of the 12th International Conference on Information Fusion.Seattle,WA:IEEE,2009:1409-1416.
[21] 李弼程,魏俊,彭天强.遥感影象融合效果的客观分析与评价[J].计算机工程与科学,2004,26(1):42-46. Li B C,Wei S,Peng T Q.Objective analysis and evaluation of remote sensing image fusion effect[J].Computer Engineering and Science,2004,26(1):42-46.
[22] 王海晖,彭嘉雄,吴巍,等.多源遥感图像融合效果评价方法研究[J].计算机工程与应用,2003(25):33-37. Wang H H,Peng J X,Wu W,et al.A study of evaluation methods on performance of the multi-source remote sensing image fusion[J].Computer Engineering and Applications,2003(25):33-37.
[23] 张宁玉,吴泉源.Brovey融合与小波融合对QuickBird图像的信息量影响[J].遥感技术与应用,2006,21(1):67-70. Zhang N Y,Wu Q Y.Information influence on QuickBird images by Brovey fusion and wavelet fusion[J].Remote Sensing Technology and Application,2006,21(1):67-70.
[24] Nikolakopoulos K G.Comparison of nine fusion techniques for very high resolution data[J].Photogrammetric Engineering and Remote Sensing,2008,74(5):647-659.
[25] 李俊杰,李杏朝,傅俏燕,等.CBERS-02B星HR与多光谱影像融合及评价[J].国土资源遥感,2008,20(2):43-47.doi:10.6046/gtzyyg.2008.02.11. Li J J,Li X C,Fu Q Y,et al.Fusion and evaluation of CBERS-02B HR and multi-spectral images[J].Remote Sensing for Land and Resources,2008,20(2):43-47.doi:10.6046/gtzyyg.2008.02.11.
[26] 凌静,徐立中,石爱业,等.一种基于Choquet模糊积分小波系数选择的遥感图像融合方法[J]. 遥感学报,2009,13(2):263-268. Ling J,Xu L Z,Shi A Y,et al.Remote sensing images fusion based on wavelet coefficients selection using Choquet fuzzy integral[J].Journal of Remote Sensing,2009,13(2):263-268.
[27] 王建梅,李德仁.QuickBird全色与多光谱数据融合方法用于土地覆盖分类中的比较研究[J].测绘通报,2005(10):37-40,43. Wang J M,Li D R.A study of fusion algorithms of QuickBird pan and multispectral images for land cover classification[J].Bulletin of Surveying and Mapping,2005(10):37-40,43.
[28] Amarsaikhan D,Saandar M,Ganzorig M,et al.Comparison of multisource image fusion methods and land cover classification[J].International Journal of Remote Sensing,2012,33(8):2532-2550.
[29] Richards J A.Remote Sensing Digital Image Analysis[M].Berlin:Springer,1999.
[30] Chikr El-Mezouar M,Taleb N,Kpalma K,et al.An IHS-based fusion for color distortion reduction and vegetation enhancement in IKONOS imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(5):1590-1602.
[31] Pajares G,De la Cruz J M.A wavelet-based image fusion tutorial[J].Pattern Recognition,2004,37(9):1855-1872.
[32] Ghosh A,Joshi P K.Assessment of pan-sharpened very high-resolution WorldView-2 images[J].International Journal of Remote Sensing,2013,34(23):8336-8359.

[1] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[2] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[3] Wei HUANG, Huixian HUANG, Jianmin XU, Jiating LIU. An improved road extraction method for remote sensing images based on Canny edge detection[J]. Remote Sensing for Land & Resources, 2019, 31(1): 65-70.
[4] Yilin JIA, Wen ZHANG, Lingkui MENG. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 95-100.
[5] Zhengwei GUO, Le WANG, Guolei SONG. SAR image land and water segmentation algorithm based on hybrid fuzzy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 62-67.
[6] Xuecheng WANG, Fei YANG, Xing GAO, Yinghui ZHANG. Assessment of forest damage due to ice-snow disaster based on the method of threshold ratio:A case study of Hunan Province[J]. Remote Sensing for Land & Resources, 2018, 30(3): 196-203.
[7] Shangwang LIU, Liuyang GAO, Bo WANG. Research on image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage[J]. Remote Sensing for Land & Resources, 2018, 30(2): 114-124.
[8] LI Feng, LIANG Handong, ZHAO Xiaoping, BAI Jiangwei, CUI Yukun. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 217-223.
[9] HAN Lirong. A discussion on the rationality of the threshold value in forming mask image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 22-28.
[10] YANG Qingshan, ZHANG Hua. A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 64-70.
[11] HUANG Wei, HUANG Jinliang, WANG Lihui, HU Yanxia, HAN Pengpeng. Remote sensing image change detection based on change vector analysis of PCA component[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 22-27.
[12] ZHANG Qian. Remote sensing image de-noising algorithm based on double discrete wavelet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 14-20.
[13] LI Huasheng, HUANG Pingping, SU Ying. A method for road extraction from remote sensing imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 56-62.
[14] QUE Haoyi, HUANG Huixian, XU Jianmin. Road edge detection based on dual-threshold SSDA template matching[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 29-33.
[15] WANG Xiaohui, XIAO Pengfeng, FENG Xuezhi, LI Haixing. Extraction of large-scale urban area information in China using DMSP/OLS nighttime light data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 159-164.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech