Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 211-216     DOI: 10.6046/gtzyyg.2017.03.31
Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS
JINAG Wei1, 2, HE Guojin1, LONG Tengfei1, 2, YIN Ranyu1, 3, SONG Xiaolu1, 2, YUAN Yiqin1, 2, LING Saiguang1, 2
1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Lisiguang, China University of Geosciences (Wuhan), Wuhan 430074, China
Download: PDF(1423 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  High geometric correction precision of GF-2 is a prerequisite for its widespread application. In this study, the authors selected Fuzhou as an experimental area. The ground control points (GCPs) were measured by Beidou satellite navigation system (BDS) and GPS respectively in the experimental area, which were used for geometric correction of the GF-2 panchromatic (PAN) image. The rational function model (RFM) was corrected by block adjustment with ground measurement point. The authors validated control point accuracy, distribution, as well as correction method for GF-2 panchromatic image correction, and analyzed the potential application to GF-2 PAN imagery geometric correction. The results show that a few control points can eliminate geometric error of GF-2 PAN imagery system. Affine transformation can reach the highest correction precision among three correction methods. Plane root mean square error (RMSE) of GPS check points using affine transformation is 1.49m and plane RMSE of Beidou RTK check points using affine transformation is 1.51m. In the two measuring modes of Beidou, Beidou RTK precision can satisfy the demand of GF-2 PAN imagery correction. The results show that, with a few high precision control points using GPS and Beidou RTK, GF-2 PAN imagery can reach high geometric correction accuracy and satisfy the demand of practical application.
Keywords ecosystem services      value evaluation      remote sensing     
Issue Date: 15 August 2017
E-mail this article
E-mail Alert
Articles by authors
KANG Hongxia
NA Xiaodong
ZANG Shuying
Cite this article:   
KANG Hongxia,NA Xiaodong,ZANG Shuying. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 211-216.
URL:     OR
[1] 潘 腾,关 晖,贺 玮.“高分二号”卫星遥感技术[J].航天返回与遥感,2015,36(4):16-24.
Pan T,Guan H,He W.GF-2 satellite remote sensing technology[J].Spacecraft Recovery & Remote Sensing,2015,36(4):16-24.
[2] 黄世存,吴海平,冯登超.高分一号多光谱高分相机全色图像正射精度验证与分析[J].遥感信息,2015,30(2):85-88.
Huang S C,Wu H P,Feng D C.Ortho accuracy analysis of GF-1 PAN imagery[J].Remote Sensing Information,2015,30(2):85-88.
[3] 陈 华,安 娜,杨清华.基于GPS实测控制点的SPOT5 1A数据几何校正方法精度比较[J].国土资源遥感,2007,19(4):47-50,doi:10.6046/gtzyyg.2007.04.10"> doi:10.6046/gtzyyg.2007.04.10.
Chen H,An N,Yang Q H.Geometric correction methods of SPOT5 1A data based on GPS-measured ground control points[J].Remote Sensing for Land and Resources,2007,19(4):47-50,doi:10.6046/gtzyyg.2007.04.10"> doi:10.6046/gtzyyg.2007.04.10.
[4] 代华兵,李春干,李政国.基于星站差分GPS及DEM的林区SPOT5数据正射校正[J].林业资源管理,2006(3):68-71.
Dai H B,Li C G,Li Z G.Orthorectification of SPOT5 data of forest area based on WADGPS and DEM[J].Forest Resources Management,2006(3):68-71.
[5] 唐新明,张 过,祝小勇,等.资源三号测绘卫星三线阵成像几何模型构建与精度初步验证[J].测绘学报,2012,41(2):191-198.
Tang X M,Zhang G,Zhu X Y,et al.Triple linear-array imaging geometry model of Ziyuan-3 surveying satellite and its validation[J].Acta Geodaetica et Cartographica Sinica,2012,41(2):191-198.
[6] 刘 斌,孙喜亮,邸凯昌,等.资源三号卫星传感器校正产品定位精度验证与分析[J].国土资源遥感,2012,24(4):36-40.doi:10.6046/gtzyyg.2012.04.07"> doi:10.6046/gtzyyg.2012.04.07.
Liu B,Sun X L,Di K C,et al.Accuracy analysis and validation of ZY-3's sensor corrected products[J].Remote Sensing for Land and Resources,2012,24(4):36-40.doi:10.6046/gtzyyg.2012.04.07"> doi:10.6046/gtzyyg.2012.04.07.
[7] 刘荣杰,张 杰,李晓敏,等.ZY-3影像在我国海岸带区域的定位精度评价[J].国土资源遥感,2014,26(3):141-145.doi:10.6046/gtzyyg.2014.03.23"> doi:10.6046/gtzyyg.2014.03.23.
Liu R J,Zhang J,Li X M,et al.Position precision evaluation of ZY-3 satellite image in the coastal zone of China[J].Remote Sensing for Land and Resources,2014,26(3):141-145.doi:10.6046/gtzyyg.2014.03.23"> doi:10.6046/gtzyyg.2014.03.23.
[8] 杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报,2010,39(1):1-6.
Yang Y X.Progress,contribution and challenges of compass/Beidou satellite navigation system[J].Acta Geodaetica et Cartographica Sinica,2010,39(1):1-6.
[9] 杨元喜,李金龙,王爱兵,等.北斗区域卫星导航系统基本导航定位性能初步评估[J].中国科学(地球科学),2014,44(1):72-81.
Yang Y X,Li J L,Wang A B,et al.Preliminary assessment of the navigation and positioning performance of Beidou regional navigation satellite system[J].Science China Earth Sciences,2014,57(1):144-152.
[10] 郁聪冲,边少锋.现阶段北斗卫星导航系统可用性分析[J].海洋测绘,2012,32(5):74-76.
Yu C C,Bian S F.Usability analysis of beidou satellite navigation system at the present stage[J].Hydrographic Surveying and Charting,2012,32(5):74-76.
[11] 王仲锋,林 灿,历 亮.北斗静态定位实验与精度分析[J].测绘与空间地理信息,2014,37(1):17-18.
Wang Z F,Lin C,Li L.Static positioning test and precision analysis of compass[J].Geomatics & Spatial Information Technology,2014,37(1):17-18.
[12] 王仲锋,禹东彬,唐铭蔚.北斗RTK的定位实验与精度分析[J].长春工程学院学报(自然科学版),2014,15(2):79-81.
Wang Z F,Yu D B,Tang M W.Positioning test and precision analysis of compass RTK[J].Journal of Changchun Institute of Technology(Natural Science Edition),2014,15(2):79-81.
[13] Grodecki J,Dial G.Block adjustment of high-resolution satellite images described by rational polynomials[J].Photogrammetric Engineering & Remote Sensing,2003,69(1):59-68.
[14] Long T F,Jiao W L,He G J.Nested regression based optimal selection(NRBOS) of rational polynomial coefficients[J].Photogrammetric Engineering & Remote Sensing,2014,80(3):261-269.
[15] 袁修孝,汪韬阳.CBERS-02B卫星遥感影像的区域网平差[J].遥感学报,2012,16(2):310-324.
Yuan X X,Wang T Y.Block adjustment for CBERS-02B satellite images[J].Journal of Remote Sensing,2012,16(2):310-324.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech