Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 272-278     DOI: 10.6046/zrzyyg.2020368
|
Fine extraction of urban villages in provincial capitals based on multivariate data
FENG Dongdong1,2,3(), ZHANG Zhihua1,2,3(), SHI Haoyue1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
Download: PDF(5316 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Urban villages refer to the rural settlements where the homesteads are surrounded by cities after the farmland in the settlements is expropriated. Given the lack of data support and quantitative analyses in the current researches on urban villages, this study aims to extract the boundaries of urban villages using the deep learning tools in ENVI based on multiple spatial data such as high-resolution remote sensing images, building outlines, and points of interest (POI). The study area is the main urban area of Guangzhou City-the capital of Guangdong Province, for which the initial correct recognition rate of urban villages was 64.31%. To overcome the confusion between the urban villages and some old residential areas and industrial areas in the extraction results, high-resolution remote sensing images were further segmented using the road network to produce label data of urban villages. Then the outlines of the urban villages in the city were extracted using a support vector machine classifier based on machine learning classification algorithms, obtaining precision of up to 90.19%. Therefore, this study can serve as a reference for the reconstruction of urban villages and urban planning and design in the study area to some extent.

Keywords urban villages      road network-based segmentation      label raster      deep learning      support vector machine     
ZTFLH:  TP79  
Corresponding Authors: ZHANG Zhihua     E-mail: 916678730@qq.com;43447077@qq.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dongdong FENG
Zhihua ZHANG
Haoyue SHI
Cite this article:   
Dongdong FENG,Zhihua ZHANG,Haoyue SHI. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020368     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/272
Fig.1  Overview of the research area
Fig.2  Experimental flow chart
特征类型 对象属性名称 属性描述
光谱特征 Mean 共3类属性值,为地块内1,2,3波段的亮度平均值
Brightness 地块内3个波段的亮度加权平均值
建筑物特征 Area
Floor
SUM_Area
AVG_Area
AVG_Floor
SD_Floor
地块内建筑物面积
地块内建筑物高度
地块内建筑物面积总和
地块内建筑物面积的平均值
地块内建筑物高度的平均值
地块内建筑物高度的标准差
POI特征 POI_Mean 共3类属性值,为地块内各类POI的核密度栅格均值
Tab.1  Features of constructed land units
Fig.3  CAM class activation diagram
Fig.4  Extraction results from urban villages
Fig.5  Urban village vector after classification processing
Fig.6  Precision parameters of deep learning model
Fig.7  Plot unit vector pattern spot in the study area
Fig.8  Image segmentation is based on vector segmentation results
序号 特征类型 特征子集 分类精度/%
1 光谱、建筑物、POI Mean,Brightness,Area,Floor,SUM_Area,AVG_Area,AVG_Floor,SD_Floor,POI_Mean 90.193 6
2 光谱、建筑物 Mean,Brightness,Area,Floor,SUM_Area,AVG_Area,AVG_Floor,SD_Floor 84.652 5
3 光谱、POI Mean,Brightness,POI_Mean 77.620 8
4 建筑物、POI Area,Floor,SUM_Area,AVG_Area,AVG_Floor,SD_Floor,POI_Mean 69.899 0
5 光谱 Mean,Brightness 65.659 7
Tab.2  Select the classification accuracy of different feature attributes
Fig.9  Urban village identification results
Fig.10  Display the recognition results in Google Earth
[1] 刘辉. 基于高分辨率遥感影像的城中村提取方法研究[D]. 武汉:武汉大学, 2018.
[1] Liu H. Study on extraction method of urban villages based on high-resolution remote sensing image[D]. Wuhan:Wuhan University, 2018.
[2] Boutell M R, Luo J, Brown C M. Scene parsing using region-based generative models[J]. IEEE Transactions on Multimedia, 2007, 9(1):136-146.
doi: 10.1109/TMM.2006.886372 url: http://ieeexplore.ieee.org/document/4032602/
[3] 尚春艳. 基于高分辨率影像的城中村土地利用变化检测[D]. 西安:长安大学, 2017.
[3] Shang C Y. Detection of land use change in urban villages based on high resolution images:A case study of Chang’an District,Xi’an City[D]. Xi’an:Chang’an University, 2017.
[4] Li Y, Huang X, Liu H. Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images[J]. Photogrammetric Engineering & Remote Sensing Journal of the American Society of Photogrammetry, 2017, 8(13):567-579.
[5] Chen Y B, Chang K T, Han F Z, et al. Investigating urbanization and its spatial determinants in the central districts of Guangzhou,China[J]. Habitat International, 2016, 51:59-69.
doi: 10.1016/j.habitatint.2015.10.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0197397515002192
[6] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[6] Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
[7] 崔珂玮, 张亚豪, 刘彤, 等. 基于ENVI深度学习模型的卫星影像识别方法研究[J]. 现代信息科技, 2020, 4(1):57-59.
[7] Cui K W, Zhang Y H, Liu T, et al. Research on satellite image recognition method based on ENVI deep learning model[J]. Modern Information Technology, 2020, 4(1):57-59.
[8] 黄亮, 左小清, 冯冲, 等. 基于Canny算法的面向对象影像分割[J]. 国土资源遥感, 2011, 23(4):26-30.doi: 10.6046/gtzyyg.2011.04.05.
doi: 10.6046/gtzyyg.2011.04.05
[8] Huang L, Zuo X Q, Feng C, et al. Object-oriented image segmentation based on Canny algorithm[J]. Remote Sensing for Land and Resources, 2011, 23(4):26-30.doi: 10.6046/gtzyyg.2011.04.05.
doi: 10.6046/gtzyyg.2011.04.05
[9] 高扬. 基于卷积神经网络的高分辨率遥感影像建筑物提取[D]. 南京:南京大学, 2018.
[9] Gao Y. Building extraction of high-resolution remote sensing image based on convolutional neural network[D]. Nanjing:Nanjing University, 2018.
[10] Cui C H, Han Z G. Spatial patterns of retail stores using POIs data in Zhengzhou,China[C]// 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services(ICSDM).IEEE, 2015:88-92.
[11] Liu J, Deng Y, Wang Y, et al. Urban nighttime leisure space mapping with nighttime light images and POI data[J]. Remote Sensing, 2020, 12(3):541.
doi: 10.3390/rs12030541 url: https://www.mdpi.com/2072-4292/12/3/541
[12] 禹文豪, 艾廷华. 核密度估计法支持下的网络空间POI点可视化与分析[J]. 测绘学报, 2015(1):82-90.
[12] Yu W H, Ai T H. The visualization and analysis of POI features under network space supported by kernel density estimation[J]. Journal of Surveying and Mapping, 2015(1):82-90.
[13] Maulik U, Chakraborty D. Remote sensing image classification:A survey of support-vector-machine-based advanced techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(1):33-52.
doi: 10.1109/MGRS.2016.2641240 url: http://ieeexplore.ieee.org/document/7882747/
[14] Patra S, Bruzzone L. A novel SOM-SVM-based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6899-6910.
doi: 10.1109/TGRS.2014.2305516 url: http://ieeexplore.ieee.org/document/6754133/
[15] 陈昂, 杨秀春, 徐斌, 等. 基于面向对象与深度学习的榆树疏林识别方法研究[J]. 地球信息科学学报, 2020, 22(9):1897-1909.
doi: 10.12082/dqxxkx.2019.190598
[15] Chen A, Yang X C, Xu B, et al. Study on drought and flood evolution in Guangxi based on TRMM data and SPI drought index[J]. Journal of Geo-Information Science, 2020, 22(9):1897-1909.
[16] 陈良浩, 朱彩英, 郭连惠, 等. 基于DSM点云纠正的正射影像房屋边缘锯齿消除[J]. 测绘科学技术学报, 2017, 34(3):279-282.
[16] Chen L H, Zhu C Y, Guo L H, et al. Removing aliasing effects of house edge in DOM based on the correction of DSM[J]. Journal of Geomatics Science and Technology, 2017, 34(3):279-282.
[17] 刘文雅, 岳安志, 季珏, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):120-129.doi: 10.6046/gtzyyg.2020.02.16.
doi: 10.6046/gtzyyg.2020.02.16
[17] Liu W Y, Yue A Z, Ji J, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+semantic segmentation model[J]. Remote Sensing for Land and Resources, 2020, 32(2):120-129.doi: 10.6046/gtzyyg.2020.02.16.
doi: 10.6046/gtzyyg.2020.02.16
[18] 罗仙仙, 曾蔚, 陈小瑜, 等. 深度学习方法用于遥感图像处理的研究进展[J]. 泉州师范学院学报, 2017, 35(6):35-41.
[18] Luo X X, Zeng W, Chen X Y, et al. Research progress of deep learning method used to remote sensing image processing[J]. Journal of Quanzhou Normal University, 2017, 35(6):35-41.
[19] Tastan E, Sozen T. Oblique split technique in septal reconstruction[J]. Facial Plastic Surgery, 2013, 29(6):487-491.
doi: 10.1055/s-0033-1360599 pmid: 24327247
[20] Abdiansah A, Wardoyo R. Time complexity analysis of support vector machines(SVM) in LIBSVM[J]. International Journal Computer and Application, 2015, 128(3):28-34.
[21] 刘伟. 基于无人机多光谱遥感影像的地物分类方法研究[D]. 石河子:石河子大学, 2017.
[21] Liu W. Study of object classification based on multispectral images of UAV[D]. Shihezi:Shihezi University, 2017.
[22] 胡蕾, 侯鹏洋. 一种基于光谱与纹理特征的多光谱遥感图像地物分类方法[J]. 中国科技论文, 2015, 10(2):197-200.
[22] Hu L, Hou P Y. A multi-spectral remote sensing image feature classification method based on spectrum and texture features[J]. Chinese Science and Technology Paper, 2015, 10(2):197-200.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[3] LI Zhixin, WANG Mengfei, JIA Weijie, JI Song, WANG Yufei. A method for identifying the number of building floors based on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3): 97-106.
[4] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[5] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[6] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[7] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[8] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[9] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[10] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[11] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[12] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
[13] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[14] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[15] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech