Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 63-71     DOI: 10.6046/gtzyyg.2018.01.09
Orginal Article |
A study of the extraction of snow cover using nonlinear ENDSI model
Haiyang PANG1(), Xiangsheng KONG1(), Lili WANG1, Yonggang QIAN2
1. College of Resources and Environmental Engineering, Ludong University, YanTai 264025, China
2. Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(1625 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Detecting snow cover information and snow space-time distribution quickly and accurately is a basic problem of ecological environment changes in the resources. Remote sensing technology effectively provides technical support for solving this problem. Normalized difference snow index (NDSI) is an important method for automatic extracting snow cover information using spectral features of snow, which have high reflection in the green band (0.53~0.59 μm) and strong absorption characteristics in short wave infrared band (1.57~1.65 μm). By using Landsat8 OLI images as the data source and according to the spectral characteristics of snow, the authors propose the enhanced normalized difference snow index (ENDSI) based on adding emissivity characteristics of snow in first band B1 (0.433~0.453 μm) and second band B2 (0.450~0.515 μm), and the utilization of this index to extract snow from OLI images. Simulation and case study results show the following characteristics: the sensitivity of ENDSI is stronger than that of NDSI for the snow thickness; with the increase of the thickness of snow, the change of ENDSI value is stronger than that of NDSI; ENDSI can effectively increase the difference between snow and non-snow; it is easy to extract snow from the image with 0.3 as ENDSI threshold and, in this way, snow extraction accuracy is improved.

Keywords ENDSI      NDSI      snow      Landsat8 OLI     
:  TP79  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiyang PANG
Xiangsheng KONG
Lili WANG
Yonggang QIAN
Cite this article:   
Haiyang PANG,Xiangsheng KONG,Lili WANG, et al. A study of the extraction of snow cover using nonlinear ENDSI model[J]. Remote Sensing for Land & Resources, 2018, 30(1): 63-71.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.09     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/63
研究区编号 行列号 获取日期 成像时间 所属地区
1 119/34 2016年2月2日 2: 29: 38 山东半岛
2 122/30 2015年12月5日 2: 46: 40 内蒙古赤峰地区
3 134/33 2013年12月3日 4: 03: 31 甘肃张掖地区
4 135/38 2015年11月30日 4: 10: 13 西藏昌都地区
5 125/32 2015年2月25日 3: 05: 40 山西大同地区
Tab.1  Remote sensing data sources of research areas
Fig.1  Locations of research areas
Fig.2  Spectral curves of the main objects in the study area
Fig.3  Numbers and variation of extracted snow pixels by ENDSI and NDSI methods
Fig.4  Spectral curves of the snow and soil in study area 5
描述 公式 编号
积雪在短波红外波段反射率 ρsnowswir=1.571.65ρ(λ)Γ(λ)1.571.65Γ(λ)=0.15 (7)
裸土在短波红外波段反射率 ρsoilswir=1.571.65ρ(λ)Γ(λ)1.571.65Γ(λ)=0.25 (8)
积雪在可见光波段反射率 ρsnow=ρblue violet+ρblue+ρgreen=3ρgreen-0.1 (9)
裸土在可见光波段反射率 ρsoil=ρblue violet+ρblue+ρgreen=3ρgreen-0.06 (10)
积雪原始NDSI NDSIsnow=ρgreen-0.15ρgreen+0.15 (0.1≤ρgreen≤1) (11)
裸土原始NDSI NDSIsoil=ρgreen-0.25ρgreen+0.25 (0≤ρgreen≤0.15) (12)
积雪变换后的ENDSI ENDSIsnow=3ρgreen-0.1-3.7×0.153ρgreen-0.1+0.15 (0.1≤ρgreen≤1) (13)
裸土变换后的ENDSI ENDSIsoil=3ρgreen-0.06-3.7×0.253ρgreen-0.14+0.25 (0≤ρgreen≤0.15) (14)
Tab.2  ENDSI linear simulation formula
Fig.5  Variable trend graph of NDSI and ENDSI in green band (draw from a specific value)
Fig.6  Snow cover maps extracted by ENDSI and NDSI in study area 5
方法 阈值 雪像元数/个 总像元/个 比例/%
ENDSI 0.3 2 602 267 41 564 191 6.260 8
NDSI 0.4 2 048 197 41 564 191 4.927 8
ENDSI-NDSI 554 217 41 564 191 1.333 4
NDSI-ENDSI 147 41 564 191 0.000 4
Tab.3  Statistics of extracted snow pixels by NDSI and ENDSI
类别 非雪
191 466(0.49%) 1 856 800(70.13%)
非雪 38 725 070(99.51%) 790 823(29.87%)
总体精度: 97.636 7% Kappa=0.778 5
Tab.4  Confusion matrix between validation area supervised classification and NDSI classification result
类别 非雪
406 070(1.04%) 2 196 266(82.95%)
非雪 38 510 466 (98.96%) 451 357(17.05%)
总体精度: 97.937 1% Kappa=0.825 7
Tab.5  Confusion matrix between validation area supervised classification and ENDSI classification result
Fig.7  Accuracy verification example diagrams
[1] Jones H G,Pomeroy J W,Walker D A,et al.Snow Ecology:An Interdisciplinary Examination of Snow-covered Ecosystems[M].Cambridge:Cambridge University Press,2001.
[2] 白淑英,吴奇,史建桥,等.青藏高原积雪深度时空分布与地形的关系[J].国土资源遥感,2015,27(4):171-178.doi:10.6046/gtzyyg.2015.04.26.
[2] Bai S Y,Wu Q,Shi J Q,et al.Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J].Remote Sensing for Land and Resources,2015,27(4):171-178.doi:10.6046/gtzyyg.2015.04.26.
[3] 郝晓华,王建,李弘毅.MODIS雪盖制图中NDSI阈值的检验——以祁连山中部山区为例[J].冰川冻土,2008,30(1):132-138.
[3] Hao X H,Wang J,Li H Y.Evaluation of the NDSI threshold value in mapping snow cover of MODIS:A case study of snow in the Middle Qilian Mountains[J].Journal of Glaciology and Geocryology,2008,30(1):132-138.
[4] Xiao X M,Shen Z X,Qin X G.Assessing the potential of VEGETATION sensor data for mapping snow and ice cover:A normalized difference snow and ice index[J].International Journal of Remote Sensing,2001,22(13):2479-2487.
[5] 王国亚,毛炜峄,贺斌,等.新疆阿勒泰地区积雪变化特征及其对冻土的影响[J].冰川冻土,2012,34(6):1293-1300.
[5] Wang G Y,Mao W Y,He B,et al.Changes in snow covers during 1961—2011 and its effects on frozen ground in Altay Region, Xinjiang[J].Journal of Glaciology and Geocryology,2012,34(6):1293-1300.
[6] Kour R,Patel N,Krishna A P.Assessment of relationship between snow cover characteristics(SGI and SCI) and snow cover indices(NDSI and S3)[J].Earth Science Informatics,2015,8(2):317-326.
[7] 于泓峰,张显峰.光学与微波遥感的新疆积雪覆盖变化分析[J].地球信息科学学报,2015,17(2):244-252.
[7] Yu H F,Zhang X F.Retrieval and analysis of snow-covered days in Xinjiang based on optical and microwave remote sensing data[J].Journal of Geo-Information Science,2015,17(2):244-252.
[8] 纪鹏,郭华东,张露.近20年西昆仑地区冰川动态变化遥感研究[J].国土资源遥感,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
[8] Ji P,Guo H D,Zhang L.Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years[J].Remote Sensing for Land and Resources,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
[9] 彦立利,王建.基于遥感的冰川信息提取方法研究进展[J].冰川冻土,2013,35(1):110-118.
[9] Yan L L,Wang J.Study of extracting glacier information from remote sensing[J].Journal of Glaciology and Geocryology,2013,35(1):110-118.
[10] 惠凤鸣,田庆久,李英成,等.基于MODIS数据的雪情分析研究[J].遥感信息,2004,19(4):35-38.
[10] Hui F M,Tian Q J,Li Y C,et al.Research on snow condition analysis based on MODIS data[J].Remote Sensing Information,2004,19(4):35-38.
[11] Hall D K,Riggs G A,Salomonson V V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J].Remote Sensing of Environment,1995,54(2):127-140.
[12] 赵军,付杰文,付鹏.雪盖指数法提取积雪范围信息的不确定性研究——以玛纳斯上游地区为例[J].遥感技术与应用,2014,29(2):293-299.
[12] Zhao J,Fu J W,Fu P.Accuracy and uncertainty of snow information based on NDSI:A case study of upstream region of Manas River[J].Remote Sensing Technology and Application,2014,29(2):293-299.
[13] 陈文倩,丁建丽,孙永猛,等.基于NDSI-NDVI特征空间的积雪面积反演研究[J].冰川冻土,2015,37(4):1059-1066.
[13] Chen W Q,Ding J L,Sun Y M,et al.Retrieval of snow cover area based on NDSI-NDVI feature space[J].Journal of Glaciology and Geocryology,2015,37(4):1059-1066.
[14] Satir O.Comparing the satellite image transformation techniques for detecting and monitoring the continuous snow cover and glacier in Cilo Mountain chain Turkey[J].Ecological Indicators,2016,69:261-268.
[15] 裴欢,房世峰,覃志豪,等.基于遥感的新疆北疆积雪盖度及雪深监测[J].自然灾害学报,2008,17(5):52-57.
[15] Pei H,Fang S F,Qin Z H,et al.Remote sensing-based monitoring of coverage and depth of snow in northern Xinjiang[J].Journal of Natural Disasters,2008,17(5):52-57.
[16] 赵军,陈恺悦,师银芳.提高森林覆盖区积雪提取精度的方法研究——以玛纳斯河流域为例[J].遥感技术与应用,2015,30(6):1051-1058.
[16] Zhao J,Chen K Y,Shi Y F.Methods research to improve the extraction accuracy of snow under forest cover:A case study of Manas River basin[J].Remote Sensing Technology and Application,2015,30(6):1051-1058.
[17] 徐涵秋,唐菲.新一代Landsat系列卫星:Landsat8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257.
[17] Xu H Q,Tang F.Analysis of new characteristics of the first Landsat8 image and their eco-environmental significance[J].Acta Ecologica Sinica,2013,33(11):3249-3257.
[18] 魏玥. 北疆区域积雪深度变化的遥感监测研究[D].乌鲁木齐:新疆师范大学,2010.
[18] Wei Y.Remote Sensing Monitoring of Snow Depth Change in North Part of Xinjiang[D].Urumqi:Xinjiang Normal University,2010.
[19] 郝晓华,王杰,王建,等.积雪混合像元光谱特征观测及解混方法比较[J].光谱学与光谱分析,2012,32(10):2753-2758.
[19] Hao X H,Wang J,Wang J,et al.Observations of snow mixed pixel spectral characteristics using a ground-based spectral radiometer and comparing with unmixing algorithms[J].Spectroscopy and Spectral Analysis,2012,32(10):2753-2758.
[20] 闪旭,刘志辉,张波.新疆军塘湖流域融雪期不同积雪及雪被地物光谱反射率特征分析[J].安徽农业科学,2014,42(3):853-855,887.
[20] Shan X,Liu Z H,Zhang B.Study of spectrum reflectance characteristics of snow and snow-covered land surface objects in the melting-snow period[J].Journal of Anhui Agricultural Sciences,2014,42(3):853-855,887.
[21] 程熙,沈占锋,骆剑承,等.利用地物波谱学习的遥感影像波段模拟方法[J].红外与毫米波学报,2010,29(1):45-48,62.
[21] Cheng X,Shen Z F,Luo J C,et al.Method on simulating remote sensing image band by using ground-object spectral features study[J].Journal of Infrared and Millimeter Waves,2010,29(1):45-48,62.
[22] 吴晓晨,孟令奎,张东映,等.冰雪遥感监测方法综述[J]. 水利信息化, 2013(1):35-39.
[22] Wu X C,Meng L K,Zhang D Y,et al.Overview on methods of snow and ice remote sensing monitoring[J]. Water Resources Informatization, 2013(1):35-39.
[23] 刘玉洁,郑照军,王丽波.我国西部地区冬季雪盖遥感和变化分析[J].气候与环境研究,2003,8(1):114-123.
[23] Liu Y J,Zheng Z J,Wang L B.Remote sensing on snow cover and variation analyzing in west of China[J].Climatic and Environmental Research,2003,8(1):114-123.
[1] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[2] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[3] Xuecheng WANG, Fei YANG, Xing GAO, Yinghui ZHANG. Assessment of forest damage due to ice-snow disaster based on the method of threshold ratio:A case study of Hunan Province[J]. Remote Sensing for Land & Resources, 2018, 30(3): 196-203.
[4] Ying WU, Sulin JIANG, Zhenhui WANG. Comparison and analysis of the interference identification methods for microwave measurements over snow land[J]. Remote Sensing for Land & Resources, 2018, 30(3): 40-47.
[5] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[6] Yali ZHANG, Tashpolat·Teyibai, Ardak·Kelimu, Dong ZHANG, Ilyas·Nuermaimaiti, Fei ZHANG. Estimation model of soil salinization based on Landsat8 OLI image spectrum[J]. Remote Sensing for Land & Resources, 2018, 30(1): 87-94.
[7] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[8] YAN Yunpeng, LIU Gang, LIU Jianyu, HAN Cong, ZHAO Zixian. Snow cover remote sensing monitoring in the west of Ngari area in northern Tibet from 2013 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 185-190.
[9] YAN Fuli, XU Jianguo, LU Zhihong. Characteristics of multi-exposure images of BJ-1 intelligent micro satellite and its applications to snow cover extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 28-34.
[10] MA Liyun, LI Jiangang, LI Shuai. Snowmelt flood disaster monitoring based on FY-3/MERSI in Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 73-78.
[11] XU Jianhui, SHU Hong, LI Yang. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
[12] SUN Zhiwen, YU Pengshan, XIA Lang, WU Shengli, JIANG Lingmei, GUO Lei. Progress in study of snow parameter inversion by passive microwave remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 9-15.
[13] BAI Shuying, SHI Jianqiao, SHEN Weishou, GAO Jixi, WANG Guanjun. Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 144-151.
[14] LI Guanghui, WANG Cheng, XI Xiaohuan, ZHENG Zhaojun, LUO Shezhou, YUE Cairong. Extraction of glacier snowline based on airborne LiDAR and hyperspectral data fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 79-84.
[15] CHEN Ting, WANG Aihua, WANG Zhiyong. Recognition of ice or snow for panchromatic remote sensing image based on transition region feature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech