Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 133-140     DOI: 10.6046/gtzyyg.2019.01.18
|
Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data
Yueru WANG1,2, Pengpeng HAN2, Shujing GUAN1,2, Yu HAN2, Lin YI2, Tinggang ZHOU1(), Jinsong CHEN2
1.Key Laboratory of Eco-environments in Three Gorges Reservoir Region of Ministry of Education, School of Geographical Science, Southwest University, Chongqing 400715, China
2.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Download: PDF(3656 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Dracaena sanderiana, as an ornamental plant, has been extensively planted in southern China, and has good economic value. In order to monitor the planting situation of Dracaena sanderiana, the authors constructed a new index-“difference enhence between net and water index”(DENWI) as a characteristic parameter based on Landsat8 OLI remote sensing image. Object-oriented classification method was used to establish the Dracaena sanderiana information extraction rule set, the Dracaena sanderiana planting information was obtained, and two kinds of traditional information extraction methods were adopted for comparative study. The results show that, compared with the traditional method, the object-oriented classification method based on DENWI can extract the information of Dracaena sanderiana, with the overall classification accuracy being 98.46% and the kappa coefficient being 0.97. Remote sensing monitoring and extraction of Dracaena sanderiana planting information is feasible and advantageous, and it can provide scientific basis for monitoring and management of Dracaena sanderiana.

Keywords Dracaena sanderiana      information extraction      object-oriented      difference enhance between net and water index      Landsat8 OLI     
:  S127TP79  
Corresponding Authors: Tinggang ZHOU     E-mail: ztg@163.com
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yueru WANG
Pengpeng HAN
Shujing GUAN
Yu HAN
Lin YI
Tinggang ZHOU
Jinsong CHEN
Cite this article:   
Yueru WANG,Pengpeng HAN,Shujing GUAN, et al. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.18     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/133
Fig.1  Geographical location of the study area and sample map
Fig.2  Comparison of Dracaena sanderiana and water display effects
Fig.3  Spectral characteristics of various ground features
Fig.4  Eigenvalue contrast histogram
Fig.5  Characteristic value display effect
Fig.6  Classification flow chart
Fig.7  Compartions of different classification results
类别 富贵竹 水体 植被 其他 总像元数 生产者精度/%
富贵竹 9 720 521 615 480 11 336 85.74
水体 689 239 419 1887 7 682 249 677 95.89
植被 0 91 745 521 4 813 750 425 99.35
其他 328 363 92 130 952 131 735 99.41
总像元数 10 737 240 394 748 115 143 927 1 143 173 -
用户精度/% 90.53 99.59 99.65 90.99 - -
总体精度=98.46% Kappa= 0.969 9
Tab.1  Accuracy evaluation of rule set classification results
分类方法 富贵竹
类生产
者精度/
%
富贵竹
类用户
精度/
%
富贵竹
面积/
km2
面积
精度/
%
总体
精度/
%
Kappa
系数
本文方法 85.74 90.53 2.42 94.90 98.46 0.969 9
最大似然法 51.46 95.12 1.38 54.12 91.76 0.836 3
最邻近法 96.89 27.34 9.04 28.22 94.17 0.885 4
Tab.2  Compartions of accuracy evaluation
[1] 毛文岭, 王勇, 刘绣华 . 富贵竹研究进展[J]. 济源职业技术学院学报, 2010,9(4):29-32.
[1] Mao W L, Wang Y, Liu X H . Review of Dracaena sanderiana research[J]. Journal of Jiyuan Vocational and Technical College, 2010,9(4):29-32.
[2] 曹涤环, 刘建武 . 富贵竹栽培管理技术[J]. 南方农业, 2010,4(6):65-67.
[2] Cao D H, Liu J W . Techniques of Dracaena sanderiana’s culture and management[J]. South China Agriculture, 2010,4(6):65-67.
[3] Tao F L, Yokozawa M, Zhang Z , et al. Remote sensing of crop production in China by production efficiency models:Models comparisons,estimates and uncertainties[J]. Ecological Modelling, 2005,183(4):385-396.
doi: 10.1016/j.ecolmodel.2004.08.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0304380004004983
[4] 吴炳方 . 全国农情监测与估产的运行化遥感方法[J]. 地理学报, 2000,55(1):25-35.
doi: 10.3321/j.issn:0375-5444.2000.01.004 url: http://www.cnki.com.cn/Article/CJFDTotal-DLXB200001003.htm
[4] Wu B F . Operational remote sensing methods for agricultural statistics[J]. Journal of Geographical Sciences, 2000,55(1):25-35.
[5] 宋盼盼, 杜鑫, 吴良才 , 等. 基于光谱时间序列拟合的中国南方水稻遥感识别方法研究[J]. 地球信息科学学报, 2017,19(1):117-124.
doi: 10.3724/SP.J.1047.2017.00117 url: http://d.wanfangdata.com.cn/Periodical/dqxxkx201701014
[5] Song P P, Du X, Wu L C , et al. Research on the method of rice remote sensing identification based on spectral time-series fitting in southern China[J]. Journal of Geo-information Science, 2017,19(1):117-124.
[6] 牛鲁燕, 张晓艳, 郑继业 , 等. 基于Landsat8 OLI数据的山东省耕地信息提取研究[J]. 中国农学通报, 2014,30(34):264-269.
doi: 10.11924/j.issn.1000-6850.2014-1872 url: http://www.cqvip.com/QK/91831X/201434/663532212.html
[6] Niu L Y, Zhang X Y, Zheng J Y , et al. Extraction of cultivated land information in Shandong Province based on Landsat8 OLI data[J]. Chinese Agricultural Science Bulletin, 2014,30(34):264-269.
[7] 陈杰, 陈铁桥, 刘慧敏 , 等. 高分辨率遥感影像耕地分层提取方法[J]. 农业工程学报, 2015,31(3):190-198.
doi: 10.3969/j.issn.1002-6819.2015.03.025 url: http://www.cnki.com.cn/Article/CJFDTotal-NYGU201503025.htm
[7] Chen J, Chen T Q, Liu H M , et al. Hierarchical extraction of farmland from high-resolution remote sensing imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(3):190-198.
[8] 刘旭拢, 何春阳, 潘耀忠 , 等. 遥感图像分类精度的点、群样本检验与评估[J]. 遥感学报, 2006,10(3):366-372.
doi: 10.3321/j.issn:1007-4619.2006.03.013 url: http://d.wanfangdata.com.cn/Periodical/ygxb200603013
[8] Liu X L, He C Y, Pan Y Z , et al. Accuracy assessment of thematic classification based on point and cluster sample[J]. Journal of Remote Sensing, 2006,10(3):366-372.
[9] 田绍鸿, 张显峰 . 采用随机森林法的天绘数据干旱区城市土地覆盖分类[J]. 国土资源遥感, 2016,28(1):43-49.doi: 10.6046/gtzyyg.2016.01.07.
doi: 10.6046/gtzyyg.2016.01.07 url: http://www.cnki.com.cn/Article/CJFDTotal-GTYG201601007.htm
[9] Tian S H, Zhang X F . Random forest classification of land cover information of urban areas in arid regions based on TH-1 data[J]. Remote Sensing for Land and Resources, 2016,28(1):43-49.doi: 10.6046/gtzyyg.2016.01.07.
[10] 李金香, 李志强, 李帅 , 等. 高分辨率遥感影像居民地半自动提取方法研究[J]. 国土资源遥感, 2017,29(3):17-24.doi: 10.6046/gtzyyg.2017.03.03.
doi: 10.6046/gtzyyg.2017.03.03 url: http://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201703003.htm
[10] Li J X, Li Z Q, Li S , et al. The method for semi-automatic extraction of residential area from high resolution remote sensing images[J]. Remote Sensing for Land and Resources, 2017,29(3):17-24.doi: 10.6046/gtzyyg.2017.03.03.
[11] 徐涵秋 . 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008,33(11):1150-1153,1211.
url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH200811012.htm
[11] Xu H Q . A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008,33(11):1150-1153,1211.
[12] 陈云浩, 冯通, 史培军 , 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006,31(4):316-320.
doi: 10.3321/j.issn:1671-8860.2006.04.009 url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb200604009
[12] Chen Y H, Feng T, Shi P J , et al. Classification of remote sensing image based on object-oriented and class rules[J]. Geomatics and Information Science of Wuhan University, 2006,31(4):316-320.
[13] 尹展, 张建国, 李宏斌 . 面向对象分类技术在高分辨率遥感影像信息提取中的应用研究[J]. 测绘与空间地理信息, 2013,36(8):61-63.
doi: 10.3969/j.issn.1672-5867.2013.08.019 url: http://d.wanfangdata.com.cn/Periodical/dbch201308019
[13] Yin Z, Zhang J G, Li H B . Application research on information extraction based on high-resolution remote sensing images using object-oriented analysis[J]. Geomatics and Spatial Information Technology, 2013,36(8):61-63.
[14] 杨青山, 张华 . 融合像元形状和光谱信息的高分遥感图像分类新方法[J]. 国土资源遥感, 2016,28(4):64-70.doi: 10.6046/gtzyyg.2016.04.10.
doi: 10.6046/gtzyyg.2016.04.10 url: http://www.cnki.com.cn/Article/CJFDTotal-GTYG201604011.htm
[14] Yang Q S, Zhang H . A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels[J]. Remote Sensing for Land and Resources, 2016,28(4):64-70.doi: 10.6046/gtzyyg.2016.04.10.
[15] eCognition.User guide[EB/OL].Munich:Definiens Imaging GmbH[ 2017- 04- 26].
url: http://www.ecognition.com
[16] 郭琳, 裴志远, 吴全 , 等. 面向对象的土地利用/覆盖遥感分类方法与流程应用[J]. 农业工程学报, 2010,26(7):194-198.
url: http://www.cnki.com.cn/Article/CJFDTotal-NYGU201007036.htm
[16] Guo L, Pei Z Y, Wu Q , et al. Application of method and process of object-oriented land use-cover classification using remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(7):194-198.
[17] 庄喜阳, 赵书河, 陈诚 , 等. 面向对象的遥感影像最优分割尺度监督评价[J]. 国土资源遥感, 2016,28(4):49-58.doi: 10.6046/gtzyyg.2016.04.08.
doi: 10.6046/gtzyyg.2016.04.08 url: http://www.cnki.com.cn/Article/CJFDTotal-GTYG201604009.htm
[17] Zhuang X Y, Zhao S H, Chen C , et al. Supervised evaluation of optimal segmentation scale with object-oriented method in remote sensing image[J]. Remote Sensing for Land and Resources, 2016,28(4):49-58.doi: 10.6046/gtzyyg.2016.04.08.
[18] Gorte B . Probabilistic segmentation of remotely sensed images[C]//ITC Publication Series, 1998(63):8-10.
[19] 马国锐, 马艳丽, 江满珍 . 结合颜色直方图和LBP纹理的遥感影像分割[J]. 国土资源遥感, 2017,29(3):32-40.doi: 10.6046/gtzyyg.2017.03.05.
doi: 10.6046/gtzyyg.2017.03.05 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201703005
[19] Ma G R, Ma Y L, Jiang M Z . Combinational color histogram and LBP textural features for remote sensing image segmentation[J]. Remote Sensing for Land and Resources, 2017,29(3):32-40.doi: 10.6046/gtzyyg.2017.03.05.
[20] Hansen M, Dubayah R, Defries R . Classification trees:An alternative to traditional land cover classifiers[J]. International Journal of Remote Sensing, 1996,17(5):1075-1081.
doi: 10.1080/01431169608949069 url: https://www.tandfonline.com/doi/full/10.1080/01431169608949069
[21] 张连蓬, 柳钦火, 王德高 , 等. 高光谱遥感植被指数的普适性分析[J].测绘通报, 2010(9):1-4.
url: http://www.cnki.com.cn/Article/CJFDTotal-CHTB201009000.htm
[21] Zhang L P, Liu Q H, Wang D G , et al. The universal analysis of vegetation indices for hyperspectral remote sensing data[J].Bulletin of Surveying and Mapping, 2010(9):1-4.
[1] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[2] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[3] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[4] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[5] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[6] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[7] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[8] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[9] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[10] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[11] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[12] Yi ZHENG, Yiqiong LIN, Jian ZHOU, Weixiu GAN, Guangxuan LIN, Fanghong XU, Guanghui LIN. Mangrove inter-species classification based on ZY-3 image in Leizhou Peninsula, Guangdong Province[J]. Remote Sensing for Land & Resources, 2019, 31(3): 201-208.
[13] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[14] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[15] Feng FU, Xinjie WANG, Jin WANG, Na WANG, Jihong TONG. Tree species and age groups classification based on GF-2 image[J]. Remote Sensing for Land & Resources, 2019, 31(2): 118-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech