Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (1) : 9-15     DOI: 10.6046/gtzyyg.2015.01.02
Review |
Progress in study of snow parameter inversion by passive microwave remote sensing
SUN Zhiwen1, YU Pengshan2, XIA Lang3, WU Shengli4, JIANG Lingmei5, GUO Lei1
1. Space Star Technology Co., Ltd., Beijing 100086, China;
2. Beijing Shenzhou Aerospace Software Technology Co., Ltd., Beijing 100094, China;
3. Key Laboratory of Resource Remote Sensing and Digital Agriculture, Beijing 100081, China;
4. National Satellite Meteorological Center, Beijing 100081, China;
5. State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China
Download: PDF(1043 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Snow depth(SD)and snow water equivalent(SWE)are key parameters in hydrology and climate research,especially in the snowstorm monitoring. In this paper,the authors first provided a brief background of the physical basis of the SD and SWE inversion algorithm,i.e., the snow microwave radiative transfer model,and discussed the snow microwave radiation and scattering in different microwave frequencies. After that, the former snow estimation inversion algorithms were reviewed, which can be categorized into two types: linear brightness temperature gradient and prior knowledge-based from mathematical methods. The advantages and limitations of the two algorithms were summarized. The linear brightness temperature gradient method is easier and runs faster,but it only suits specific study areas. For the establishment of a prior knowledge-based model,researchers need to obtain the sample data and repeated training so as to achieve higher accuracy. However, the model requires the independence and significant mean difference of the samples. The SD and SWE inversion algorithms for Fengyun-3 microwave radiation imager (FY-3 MWRI) were described,which are composed of global business algorithm and improved regional algorithm for China. Finally, the research focuses in this aspect were predicted.
Keywords LiDAR      point cloud filtering      micro-geomorphologic features      fissure identification      linear detection     
:  TP79  
Issue Date: 08 December 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Chunlei
GUO Zhaocheng
ZHANG Zonggui
LI Qian
SHANG Boxuan
WU Fang
Cite this article:   
XIAO Chunlei,GUO Zhaocheng,ZHANG Zonggui, et al. Progress in study of snow parameter inversion by passive microwave remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 9-15.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.01.02     OR     https://www.gtzyyg.com/EN/Y2015/V27/I1/9
[1] Hall D K,Riggs G A,Salomonson V V.MODIS/AQUA snow cover 8-day L3 global 0. 05deg CMG Version 5[DB/OL].Boulder, Colorado USA: National Snow and Ice Data Center.Digital media,2007,updated daily.http://nsidc.org/data/myd10c2.html.
[2] 王世杰.利用NOAA/AVHRR影像资料估算积雪量的方法探讨[J].冰川冻土,1998,20(1):68-73. Wang S J.Exploring the estimation of snowpack volume with NOAA/AVHRR satellite data[J].Journal of Glaciology and Geocryology,1998,20(1):68-73.
[3] Hall D,Riggs G,Salomonson V V.Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J].Remote Sensing of Environment,1995,54(2):127-140.
[4] 周咏梅,贾生海,刘萍.利用NOAA-AVHRR资料估算积雪参量[J].气象科学,200l,21(1):117-121. Zhou Y M,Jia S H,Liu P.The method of snowcover parameters estimation using NOAA-AVHRR data[J].Scientia Meteorologica Sinica,2001,21(1):117-121.
[5] (美)乌拉比F T,穆尔 R K,冯建超.微波遥感[M].北京:科学出版社,1986. Ulaby F T,Moore R K,Fung J C.Microwave Remote Sensing:Active and Passive[M].Norwood, MA:Artech House,1986.
[6] 金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1993. Jin Y Q.Remote Sensing Theory of Electromagnetic Scattering and Thermal Emission[M].Beijing:Science Press,1993.
[7] (美)霍尔 D K,马丁内克 J.冰雪遥感[M].顾钟炜,陈贤章,冯学智,等译.兰州:甘肃科学技术出版社,1991. Hall D K,Martinec J.Remote Sensing of Ice and Snow[M].London:Chapman and Hall,1985.
[8] Tsang L,Kong J A,Shin R T.Theory of Microwave Remote Sensing[M].New York:Wiley,1985.
[9] 蒋玲梅.被动微波雪水当量研究[D].北京:北京师范大学,2005. Jiang L M.Passive Microwave Remote Sensing of Snow Water Equivalence Study[D].Beijing:Beijing Normal University,2005.
[10] Tsang L,Kong J A.Multiple scattering of electromagnetic waves by random distribution of discrete scatterers with coherent potential and quantum mechanical formalism[J].Journal of Applied Physics,1980,51(7):3465-3485.
[11] Armstrong R L,Brodzik M J.Recent northen hemisphere snow extent:A comparison of data derived from visible and microwave satellite sensors[J].Geophysical Research Letters,2001,28(19):3673-3676.
[12] 车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368. Che T,Li X,Gao F.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J].Journal of Glaciology and Geocryology,2004,26(3):363-368.
[13] Martinec J.Expected snow loads on structures from incomplete hydrological data[J].Journal of Glaciology,1978,19:185-195.
[14] Bernier P Y.Microwave remote sensing of snowpack properties:Potential and limitations[J].Nordic Hydrology,1987,18(1):1-20.
[15] Rango A,Chang A T C,Foster J L.The utilization of spaceborne microwave radiometers for monitoring snowpack properties[J].Nordic Hydrology,1979,10(1):25-40.
[16] Josberger E G,Mognard N M.A passive microwave snow depth algorithm with a proxy for snow metamorphism[J].Hydrological Processes,2002,16(8):1557-1568.
[17] Goodison B E,Walker A E.Use of snow cover derived from satellite passive microwave data as an indicator of climate change[J].Annals of Glaciology,1993,17:137-142.
[18] Chang A T C,Foster J L,Hall D K.NIMBUS-7 SMMR derived global snow cover parameters[J].Annals of Glaciology,1987,9:39-44.
[19] Tedesco M,Pulliainen J,Takala,et al.Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J].Remote Sensing of Environment,2004,90(1):76-85.
[20] Kelly R.The AMSR-E snow depth algorithm:Description and initial results[J].Journal of the Remote Sensing Society of Japan,2009,29(1):307-317.
[21] 孙知文,施建成,杨虎,等.风云三号微波成像仪积雪参数反演算法初步研究[J].遥感技术与应用,2007,22(2):264-267. Sun Z W,Shi J C,Yang H,et al.A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J].Remote Sensing Technology and Application,2007,22(2):264-267.
[22] Ulaby F T,Moore R K,Fung A K.Microwave Remote Sensing:Active and Passive.Volume I:Microwave Remote Sensing Fundamentals and Radiometry[M].Reading,Massachusetts:Addison-Wesley,Advanced Book Program,1981:1-456.
[23] England A W.Thermal microwave emission from a scattering layer[J].Journal of Geophysical Research,1975,80(32):4484-4496.
[24] Pulliainen J T,Grandell J,Hallikainen M T.HUT snow emission model and its applicability to snow water equivalent retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1378-1390.
[25] Wiesmann A,Mtzler C.Microwave emission model of layered snowpacks[J].Remote Sensing of Environment,1999,70(3):307-316.
[26] Tsang L.Dense media radiative transfer theory for dense discrete random media with spherical particles of multiple sizes and permittivities[J].Progress in Electromagnetics Research,1992,5(6):181-230.
[27] Tsang L,Chen C T,Chang A T C,et al.Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J].Radio Science,2000,35(3):731-749.
[28] Fung A K.Microwave Scattering and Emission Models and Their Applications[M].Boston:Artech House,1994:1-573.
[29] Armstrong R L,Rango A,Chang A T C,et al.Snow depths and grain size relationships with relevance for passive microwave studies[J].Annals of Glaciology,1993,17:171-176.
[30] Chang A T C,GIoersen P,Schmugge T,et al.Microwave emission from snow and glacier ice[J].Journal of Glaciology,1976,16(74):23-39.
[31] Langlois A,Royer A,Dupont F,et al.Improved corrections of forest effects on passive microwave satellite remote sensing of snow over boreal and subarctic regions[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3824-3837.
[32] Sturm M,Holmgren J,Liston G E.A seasonal snow cover classification system for local to global applications[J].Journal of Climate,1995,8(5):1261-1283.
[33] Kelly R E,Chang A T,Tsang L,et al.A prototype AMSR-E global snow area and snow depth algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):230-242.
[34] Grippa M,Mognard N,Toan T L,et al.Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm[J].Remote Sensing of Environment,2004,93(1-2):30-41.
[35] Goodison B,Walker A.Canadian development and use of snow cover information from passive microwave satellite data[M]//Choudhury B,Kerr Y H,Njoku E G,et al.Passive Microwave Remote Sensing of Land-Atmosphere Interactions.Utrecht:VSP International Science Publishers,1995:245-262.
[36] Davis D T,Chen Z X,Tsang L,et al.Retrieval of snow parameters by iterative inversion of a neural network[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(4):842-852.
[37] Durand M,Liu D S.The need for prior information in characterizing snow water equivalent from microwave brightness temperatures[J].Remote Sensing of Environment,2012,126:248-257.
[38] 杨虎,郭华东,王长林,等.基于神经网络方法的极化雷达地表参数反演[J].遥感学报,2002,6(6):451-455. Yang H,Guo H D,Wang C L,et al.Polarimetric SAR surface parameters inversion based on neural network[J].Journal of Remote Sensing,2002,6(6):451-455.
[39] 孙知文.风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发[D].北京:北京师范大学,2007. Sun Z W.Estimate Snow Depth and Snow Water Equivalent Algorithm for FY-3 MWRI and Development of System[D].Beijing:Beijing Normal University,2007.
[40] Chang A T C,Rango A.Algorithm Theoretic Basis Document(ATBD) for the AMSR-E Snow Water Equivalent Algorithm,Version 3.1[R].USA:NASA,2000.
[41] 杨虎,李小青,游然,等.风云三号微波成像仪定标精度评价及业务产品介绍[J].气象科技进展,2013,3(4):136-143. Yang H,Li X Q,You R,et al.Environmental data records from Feng Yun-3B mircowave radiation imager[J].Advances in Meteorological Science and Technology,2013,3(4):136-143.
[42] Hallikainen M T,Ulaby F,Abdelrazik M.Dielectric properties of snow in the 3 to 37 GHz range[J].IEEE Transactions on Antennas and Propagation,1986,34(11):1329-1340.
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[3] Zhenyu MA, Bowei CHEN, Yong PANG, Shengxi LIAO, Xianlin QIN, Huaiqing ZHANG. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43-50.
[4] Qi LI, Jianchao WANG, Yachao HAN, Zihong GAO, Yongjun ZHANG, Dingjian JIN. Potential evaluation of China’s coastal airborne LiDAR bathymetry based on CZMIL Nova[J]. Remote Sensing for Land & Resources, 2020, 32(1): 184-190.
[5] Chong LI, Haolin LI, Yi SHE. Quality inspection of geographic information products based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 258-263.
[6] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[7] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[8] Sirui YANG, Zhaohui XUE, Ling ZHANG, Hongjun SU, Shaoguang ZHOU. Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River[J]. Remote Sensing for Land & Resources, 2018, 30(4): 33-40.
[9] Li YAN, Yao LI, Hong XIE. Automatic reconstruction of LoD3 city building model based on airborne and vehicle-mounted LiDAR data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 97-101.
[10] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[11] LI Yunfan, TAN Debao, LIU Rui, WU Jianwei. An improved RANSAC algorithm for building point clouds segmentation in consideration of roof structure[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 20-25.
[12] YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
[13] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[14] WANG Chunlin, SUN Jinyan, ZHOU Shaoguang, QIAN Haiming, HUANG Zuoji. Building boundary extraction using LiDAR data and images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 78-85.
[15] ZHA Dajian, LI Lelin, JIANG Wangshou, HAN Yongshun. Expanding research on CSG in 3D reconstruction from LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech