Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 93-105     DOI: 10.6046/zrzyyg.2021039
|
A method for 3D modeling of urban buildings based on multi-source data integration
SONG Renbo1(), ZHU Yuxin2, GUO Renjie2, ZHAO Pengfei2, ZHAO Kexin2, ZHU Jie2, CHEN Ying2
1. School of Atmospheric and Remote Sensing, Wuxi University, Wuxi 214105, China
2. School of Urban and Environmental Science, Huaiyin Normal University, Huai’an 223300, China
Download: PDF(6760 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Buildings are important urban components because they serve as the carrier and represent the image of a city. Establishing the 3D models of buildings is a critical base for constructing digital, virtual, and smart cities. However, existing 3D modeling methods of buildings suffer the shortcomings such as high cost, tedious and complex operations, and high labor intensity. Given this, this study proposed a method for 3D modeling of urban buildings based on multi-source data integration. Meanwhile, this study achieved the automatic construction of the 3D models of buildings using the GIS modeling technology. The main principles and operations of the modeling method are as follows. First, high-resolution satellite remote sensing images, electronic maps of building contours, and panoramic images were integrated and preprocessed on a remote sensing and GIS integration platform to extract buildings’ spatial and attribute information such as geometric boundaries, height, floor number, and roof type. Next, this study proposed a scheme for modeling the main structures of buildings based on the constructive solid geometry (CSG) method. Then, the automatic construction of the 3D models of buildings was achieved using the GIS modeling technology, as well as multiple tools in the ArctoolBox window, such as combined data processing, file conversion, spatial analysis, 3D analysis, and scripts and programs. Afterward, the 3D models of buildings were visualized using the texture mapping technology. Finally, the north campus of Huaiyin Normal University was selected to verify the modeling method proposed in this study. As indicated by the analysis of modeling process and visualization effects, the modeling method proposed in this study is characterized by low cost, simple operations, and high automatic degree and can meet the high requirements of accuracy. Meanwhile, this method has great visualization effects and can provide reliable technical solutions for the 3D modeling and visualization of large-scale urban buildings.

Keywords urban buildings      3D modeling      multi-source data integration      remote sensing image      electronic map      panoramic image      GIS modeling     
ZTFLH:  P962  
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Renbo SONG
Yuxin ZHU
Renjie GUO
Pengfei ZHAO
Kexin ZHAO
Jie ZHU
Ying CHEN
Cite this article:   
Renbo SONG,Yuxin ZHU,Renjie GUO, et al. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021039     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/93
Fig.1  Sketch of 3D modeling and visualizing a building
Fig.2  Workflow for constructing the 3D building models of a city
Fig.3  Acquired results of the multi-source modeling data
Fig.4  The extracting processes and its results of the floor numbers of a building
Fig.5  Extraction, preprocessing and its results of polygon contours of multiple buildings
OID* Shape* 层数 层高/
m
屋顶高
度/m
倾斜角
度/(°)
名称
1 Polygon 6 3 3 45 宿舍1
2 Polygon 6 3 3 45 宿舍2
3 Polygon 6 3 3 45 宿舍3
4 Polygon 6 3 3 45 宿舍4
5 Polygon 6 3 3 45 宿舍5
6 Polygon 6 3 3 45 宿舍6
Tab.1  Extracted spatial and attribute information of the buildings
Fig.6  The process of creating the side walls of a building
Fig.7  Results of creating the side walls of a building
模型工具 统计项
数量/
操作
数/次
每次耗
时/s
总耗
时/s
迭代器工具(Iterate) 1 1 0.04 5.2
选择工具(Select) 1 1 1.79 232.7
拷贝要素工具(CopyFeatures) 1 1 2.65 344.5
要素结点转点工具(FeatureVerticesToPoints) 1 1 1.69 219.7
添加字段工具(AddFields) 1 1 0.52 67.6
依据属性要素转三维工具(FeatureTo3DByAttribute) 1 1 1.41 183.3
侧墙脚本程序 1 1 1.00 130.0
总计 1 183
Tab.2  Experimental modeling 3D buildings by grouping statistics
Fig.8  The process of creation the side windows of a building
Fig.9  Results of creating the side windows of a building
模型工具 窗户多边形
数量/
操作
数/次
每次耗
时/s
总耗
时/s
迭代器工具(Iterate) 1 1 1.08 140.4
选择工具(Select) 1 1 2.44 317.2
添加字段工具(AddFields) 2 2 0.60 78.0
计算字段工具(CalculateField) 2 2 1.07 139.1
拷贝要素工具(CopyFeatures) 1 1 4.10 533.0
要素结点转点工具(FeatureVerticesToPoints) 1 1 2.20 286.0
依据要素转三维工具
(FeatureTo3DByAttribute)
1 1 2.51 326.3
窗户脚本程序 1 1 1.00 130.0
总计 2 166.9
Tab.3  Experimental modeling 3D windows by grouping statistics
Fig.10  Building roof generation model and generation results
模型工具 窗户多边形
数量/
操作
数/次
每次耗
时/s
总耗
时/s
迭代器工具(Iterate) 1 1 0.06 7.8
选择工具(Select) 1 1 0.72 93.6
缓冲区工具(Buffer) 2 2 1.00 520.0
添加字段工具(AddFields) 5 5 1.00 3 250.0
计算字段工具(CalculateField) 6 6 1.00 4 680.0
拷贝要素工具(CopyFeatures) 1 1 1.00 130.0
要素转线工具(FeatureToLines) 3 3 1.00 1 170.0
要素结点转点工具(FeatureVerticesToPoints) 1 1 1.00 130.0
创建TIN(3)工具(CreateTIN) 1 1 1.92 249.6
创建TIN(4)工具(CreateTIN) 1 1 0.91 118.3
TIN拉伸工具(ExtrudeBetween) 1 1 1.5 195.0
总计 10 349.3
Tab.4  Experimental modeling 3D roofs by grouping statistics
Fig.11  Interface of script tool for 3D difference and hollowing results
模型工具 侧墙和窗户模型
数量
/个
操作
数/次
每次操作
时间/s
每次运行
时间/s
汇总/
s
脚本 1个 130 5 4.45 13 421.2
Tab.5  Experimental modeling 3D roofs by grouping statistics
Fig.12  Effects of texture mapping on the 3D building models
Fig.13  Overview map of the modeling experiment area
Fig.14  Visualization of the constructed building models
建模方法 建筑物多边形
数量/
操作
数/次
消耗时间 建模
对象
ModelBuilder建模 130 3 7.5 h 侧墙、门窗和屋顶
SketchUp手工建模 130 36 614 14 d 侧墙、门窗和屋顶
Tab.6  Experimental modeling 3D buildings by comparative statistics and analysis
[1] 刘晓艳, 林晖, 张宏. 虚拟城市建设原理与方法[M]. 北京: 科学出版社, 2003.
[1] Liu X Y, Lin H, Zhang H. Prinaples and methods of virtual city construction[M]. Beijing: Science Press, 2003.
[2] 万刚, 陈刚, 游雄. 虚拟城市中地物几何建模技术的研究[J]. 测绘学报, 2002, 31(1):60-65.
[2] Wan G, Chen G, You X. Research on geometry modeling of terrain features in virtual city[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(1):60-65.
[3] 毛健, 苏笛. 地理场景三维可视化系统的关键问题研究[J]. 城市勘测, 2012(4):9-11.
[3] Mao J, Su D. Key issues of the geographical scene visualization system[J]. Urban Geotechnical Investigation and Surveying, 2012(4):9-11.
[4] 周国清, 黄煜, 岳涛, 等. 基于纹理数据和SCSG-BR表示的城市建筑物混合建模[J]. 地球信息科学学报, 2018, 20(4):543-551.
doi: 10.12082/dqxxkx.2018.170574
[4] Zhou G Q, Huang Y, Yue T, et al. Hybrid modeling for urban buildings based on textures and SCSG-BRs representation[J]. Journal of Geo-Information Science, 2018, 20(4):543-551.
[5] 缪永伟, 汪逊, 陈佳舟, 等. 基于单幅图像成像一致性的组合式建筑交互建模[J]. 计算机辅助设计与图形学学报, 2018, 30(11):2001-2010.
[5] Miao Y W, Wang X, Chen J Z, et al. Single image based interactive modeling for modular architectures using imaging consistency[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30(11):2001-2010.
doi: 10.3724/SP.J.1089.2018.17033 url: http://www.jcad.cn/jcadcms/news/100000/2018/44c45901e7f2451a9c6897c0d06aaa11.shtml
[6] 朱曙光, 何宽, 周建郑. 徕卡三维激光扫描系统在建筑物精细建模中的应用[J]. 测绘通报, 2018(2):154-156.
[6] Zhu S G, He K, Zhou J Z. Research on the application of Leica 3D laser scanning system in the fine modeling of buildings[J]. Bulletin of Surveying and Mapping, 2018(2):154-156.
[7] 任诚, 高利敏, 冯耀楼, 等. 基于无人机倾斜摄影的建筑物三维建模尝试[J]. 测绘通报, 2019(2):161-164.
[7] Ren C, Gao L M, Feng Y L, et al. An attempt of building 3D modeling based on UAV tilt photography[J]. Bulletin of Surveying and Mapping, 2019(2):161-164.
[8] 朱庆伟, 马宇佼. 基于三维激光扫描仪的建筑物建模应用研究[J]. 地理与地理信息科学, 2014, 30(6):31-35.
[8] Zhu Q W, Ma Y J. Application and research of building modeling based on 3D laser scanner[J]. Geography and Geo -Information Science, 2014, 30(6):31-35.
[9] 李乐林, 江万寿. 基于等高线族分析的LiDAR点云建筑物模型自动识别及重建[J]. 测绘通报, 2013(10):23-25,29.
[9] Li L L, Jiang W S. Automatic recognition and reconstruction of building roof models with LiDAR cloud points based on contours clustering[J]. Bulletin of Surveying and Mapping, 2013(10):23-25,29.
[10] 何原荣, 郑渊茂, 潘火平, 等. 基于点云数据的复杂建筑体真三维建模与应用[J]. 遥感技术与应用, 2016, 31(6):1091-1099.
[10] He Y R, Zheng Y M, Pan H P, et al. Real three-dimensional modeling and application of complex construction based on the point cloud data[J]. Remote Sensing Technology and Application, 2016, 31(6):1091-1099.
[11] 王田磊, 袁进军, 王建锋. 三维激光扫描技术在建筑物三维建模可视化中的应用[J]. 测绘通报, 2012(9):44-47.
[11] Wang T L, Yuan J J, Wang J F. The application of TLS technology in the 3D visualization modeling[J]. Bulletin of Surveying and Mapping, 2012(9):44-47.
[12] 史文中, 曹辉, 张剑清. 基于高分辨率影像的城市三维建模[J]. 武汉大学学报(信息科学版), 2004, 29(9):783-786.
[12] Shi W Z, Cao H, Zhang J Q. 3D urban building modeling based on high resolution satellite images[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9):783-786.
[13] 杨玲, 张剑清. 基于模型的航空影像矩形建筑物半自动建模[J]. 计算机工程与应用, 2008, 44(33):10-12.
[13] Yang L, Zhang J Q. Model-based semi-automated building reconstruction from aerial images[J]. Computer Engineering and Applications, 2008, 44(33):10-12.
[14] 王建强, 钟春惺, 江丽钧, 等. 基于多视航空影像的城市三维建模方法[J]. 测绘科学, 2014, 39(3):70-74.
[14] Wang J Q, Zhong C X, Jiang L J, et al. 3D city modeling construction based on multi-view aerial images[J]. Science of Surveying and Mapping, 2014, 39(3):70-74.
[15] 杨玲. 基于广义点摄影测量的建筑物三维建模[J]. 测绘科学, 2014, 39(4):83-87.
[15] Yang L. Buildings reconstruction based on generalized point photogrammetry[J]. Science of Surveying and Mapping, 2014, 39(4):83-87.
[16] 隋铭明, 魏雅男, 程思, 等. 基于跨平面单像量测的建筑物三维建模方法[J]. 地理与地理信息科学, 2013, 29(6):6-9.
[16] Sui M M, Wei Y N, Cheng S, et al. A method of establishing 3D model of buildings based on single image measurement across multiple planes[J]. Geography and Geo-Information Science, 2013, 29(6):6-9.
[17] 薛梅. 一种基于形状方法的建筑物三维建模新方法[J]. 地理与地理信息科学, 2012, 28(6):31-34.
[17] Xue M. A shape grammar based method for 3D building modeling[J]. Geography and Geo-Information Science, 2012, 28(6):31-34.
[18] 艾海滨, 董友强, 王庆栋, 等. 基于语义的倾斜影像单体建模技术研究[J]. 测绘科学, 2019, 44(6):151-158.
[18] Ai H B, Dong Y Q, Wang Q D, et al. Study of semantic modeling framework-based method for 3D building reconstruction using oblique aerial images[J]. Science of Surveying and Mapping, 2019, 44(6):151-158.
[19] 程亮, 龚健雅, 李满春, 等. 集成多视航空影像与LiDAR数据重建3维建筑物模型[J]. 测绘学报, 2009, 38(6):494-501.
[19] Cheng L, Gong J Y, Li M C, et al. 3D building model reconstruction from multi-view aerial images and LiDAR data[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(6):494-501.
[20] 张晖, 刘超, 李妍, 等. 基于CityEngine的建筑物三维建模技术研究[J]. 测绘通报, 2014(11):108-112.
[20] Zhang H, Liu C, Li Y, et al. Research on 3D building modeling technology based on CityEngine[J]. Bulletin of Surveying and Mapping, 2014(11):108-112.
[21] 路春燕, 卫海燕, 李吉英. IMAGIS在城市三维建模中的应用——以滨州市会展中心为例[J]. 测绘科学, 2011, 36(6):270-272.
[21] Lu C Y, Wei H Y, Li J Y. IMAGIS application in city three-dimensional modeling:Taking Binzhou convention and exhibition center as the example[J]. Science of Surveying and Mapping, 2011, 36(6):270-272.
[22] 程朋根, 李志荣, 聂运菊. 城中村批量快速三维建模方法研究及实现[J]. 测绘科学, 2019, 44(4):48-54.
[22] Cheng P G, Li Z R, Nie Y J. Research and implementation of batch rapid 3D modeling method for urban village[J]. Science of Surveying and Mapping, 2019, 44(4):48-54.
[23] 许捍卫, 范小虎, 任家勇, 等. 基于SketchUp和ArcGIS的城市三维可视化研究[J]. 测绘通报, 2010(3):52-54.
[23] Xu H W, Fan X H, Ren J Y, et al. Research on 3D visualization of digital city based on SketchUp and ArcGIS[J]. Bulletin of Surveying and Mapping, 2010(3):52-54.
[24] 许捍卫, 房晓亮, 任家勇, 等. 基于SketchUp的城市三维建模技术[J]. 测绘科学, 2011, 36(1):213-214,189.
[24] Xu H W, Fang X L, Ren J Y, et al. 3D modeling technique of digital city based on SketchUp[J]. Science of Surveying and Mapping, 2011, 36(1):213-214,189.
[25] 詹总谦, 李一挥, 桂鑫源. 倾斜摄影测量与SketchUp二次开发技术相结合的建筑三维重建[J]. 测绘通报, 2017(5):71-74.
[25] Zhan Z Q, Li Y H, Gui X Y. Building reconstruction based on oblique photogrammetry and SketchUp secondary development[J]. Bulletin of Surveying and Mapping, 2017(5):71-74.
[26] 任诚, 高利敏, 冯耀楼, 等. 基于无人机倾斜摄影的建筑物三维建模尝试[J]. 测绘通报, 2019(2):161-164.
[26] Ren C, Gao L M, Feng Y L, et al. An attempt of building 3D modeling based on UAV tilt photography[J]. Bulletin of Surveying and Mapping, 2019(2):161-164.
[27] 余忠迪, 李辉, 巴芳, 等. 基于消费者级无人机的城市三维建模[J]. 自然资源遥感, 2018, 30(2):67-72.doi: 10.6046/gtzyyg.2008.02.09.
doi: 10.6046/gtzyyg.2008.02.09
[27] Yu Z D, Li H, Ba F, et al. 3D city model construction based on a consumer-grade UAV[J]. Remote Sensing for Land and Resources, 2018, 30(2):67-72.doi: 10.6046/gtzyyg.2008.02.09.
doi: 10.6046/gtzyyg.2008.02.09
[28] 汪雅, 曾志. 一种近景倾斜摄影的三维建模盲区自动修复技术[J]. 自然资源遥感, 2021, 33(1):72-77.doi: 10.6046/gtzyyg.2020172.
doi: 10.6046/gtzyyg.2020172
[28] Wang Y, Zeng Z. An automatic repairing technology of 3D model for blind area in oblique photography based on close range image[J]. Remote Sensing for Land and Resources, 2021, 33(1):72-77.doi: 10.6046/gtzyyg.2020172.
doi: 10.6046/gtzyyg.2020172
[29] 张军海, 李仁杰, 傅学庆, 等. 地理信息系统原理与实践(第二版)[M]. 北京: 科学出版社, 2015.
[29] Zhang J H, Li R J, Fu X Q, et al. Principles and practices of geographic information system(2nd edition)[M]. Beijing: Sciences Press, 2015.
[30] 王树臻, 郑国强, 王光生, 等. 多源点云数据融合的建筑物精细化建模[J]. 测绘通报, 2020(8):28-32,38.
[30] Wang S Z, Zheng G Q, Wang G S, et al. Building fine modeling based on multi-source point cloud data fusion[J]. Bulletin of Surveying and Mapping, 2020(8):28-32,38.
[31] 孙松梅, 黄天进, 孙颖. 城市高精度实景三维单体模型建设及应用[J]. 测绘通报, 2021(1):108-111.
[31] Sun S M, Huang T J, Sun Y. Construction and application of high-precision three-dimensional monomerization model for urban scenes[J]. Bulletin of Surveying and Mapping, 2021(1):108-111.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[5] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[6] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[7] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[8] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[9] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[10] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[11] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[12] MA Xiaojian, ZHAO Fashun, LIU Yanbin. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 17-26.
[13] CHENG Tao. A method for vector geographic information acquisition based on synchronous correction with remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 59-64.
[14] TANG Wenkui, YU Lu, ZHOU Weiqi, YUE Jun, ZHOU Zheng. Dynamic changes in the landscape connectivity in Shenzhen City determined based on the long time series of remote sensing data[J]. Remote Sensing for Natural Resources, 2022, 34(3): 97-105.
[15] SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech