Please wait a minute...
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 102-107     DOI: 10.6046/gtzyyg.2018.04.16
Research and production of a lenticular stereoscopic subsidence map
Jinghui FAN1, Ruyi WANG2(), Hongli ZHAO1, Yanming LI3, Hao LIN4, Yunpeng YAN1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
2. China Zhengyuan Geomatics Co., Ltd., Ji’nan 250101, China;
3. Beijing Graphics and Image Information Technology Co., Ltd., Beijing 100083, China
4. Xinyang Normal University, Xinyang 464000, China
Download: PDF(3600 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Lenticular stereoscopic images have been widely used in the three-dimensional expression of characters, landscapes and geomorphic features, but they have not yet been found in the visualization of depression shape of regional subsidence. Based on the research and introduction of the lenticular stereoscopic principle, the authors produced a lenticular stereoscopic subsidence map. The J50 thematic map of land subsidence at the scale of 1:1 000 000 was used as the data source. After the three-dimensional simulation using the subsidence isoline, the images series with different viewing angles were generated based on the simulated scene. Then, the images series were sampled and arranged to compose the base map. Finally, the base map was printed on the lenticular plate and properly processed. The research shows that the subsidence field can be innovatively and intuitively visualized using 3D GIS, digital image processing and lenticular stereoscopic technology.

Keywords lenticular stereoscopic map      subsidence      three-dimensional visualization     
:  TP79  
Corresponding Authors: Ruyi WANG     E-mail:
Issue Date: 07 December 2018
E-mail this article
E-mail Alert
Articles by authors
Jinghui FAN
Hongli ZHAO
Yanming LI
Yunpeng YAN
Cite this article:   
Jinghui FAN,Ruyi WANG,Hongli ZHAO, et al. Research and production of a lenticular stereoscopic subsidence map[J]. Remote Sensing for Land & Resources, 2018, 30(4): 102-107.
URL:     OR
Fig.1  Sketch of lenticular
Fig.2  Principle sketch of stereo feeling of lenticular image
Fig.3  Principle sketch of lenticular base image composed by 3 images
数据信息类型 数据信息内容
地表形变信息来源 ENVISAT ASAR时间序列数据
提取方法 相干目标短基线时间序列分析
基础地理底图 国家地理信息1:100万数字地形图
投影坐标 高斯-克吕格投影、西安80坐标系
数据周期 2008年1月—2010年10月
制图时间 2011年
制图单位 中国国土资源航空物探遥感中心
Tab.1  Summary information of the source data used to make the lenticular stereoscopic subsidence map
Fig.4  Flowchart of the production of a lenticular image
Fig.5  Original map and red-green anaglyph of severe subsidence area
Fig.6  Series viewing images simulated for different angles of a subsidence scene
Fig.7  Lenticular base map of severe subsidence area
[1] Roberts D E . History of lenticular and related autostereoscopic methods[Z]. Hillsboro:Leap Technologies,LLC, 2003.
[2] 史瑞芝 . 光栅立体印刷技术综述[J]. 中国印刷与包装研究, 2009,1(5):1-9.
doi: 10.3969/j.issn.1674-5752.2009.05.001 url:
[2] Shi R Z . Summary of grating stereoscopic printing technology[J]. China Printing and Packaging Study, 2009,1(5):1-9.
[3] Johnson R B, Jacobsen G A. Advances in lenticular lens arrays for visual display [C]//Mouroulis P Z,Smith W J,Johnson R B.Current Developments in Lens Design and Optical Engineering VI.San Diego:SPIE, 2005.
[4] Buchroithner M F, Knust C . True-3D in cartography-current hard- and softcopy developments[M] //Moore A,Drecki I.Geospatial Visualisation.Berlin Heidelberg:Springer, 2013: 41-65.
[5] Moellering H . Perspectives on 3D visualization of spatial geodata and future prospects[M] // Buchroithner M.True-3D in Cartography.Berlin Heidelberg:Springer, 2012: 1-19.
[6] 史瑞芝, 安敬 . 一种基于柱镜光栅成像技术制作立体影像图的方法[J].测绘通报, 2008(11):31-33.
[6] Shi R Z, An J . A method of composite stereo photomap based on lenticular screen[J].Bulletin of Surveying and Mapping,2008(11):31-33.
[7] 彭爱华, 朱化凤 . 应用于立体印刷的矩阵式透镜光栅的原理[J]. 燕山大学学报, 2010,34(3):262-265.
doi: 10.3969/j.issn.1007-791X.2010.03.016 url:
[7] Peng A H, Zhu H F . Principium of matrix lens grating in three-dimensional printing[J]. Journal of Yanshan University, 2010,34(3):262-265.
[8] 李鹏 . 立体印刷的成像原理[J].印刷质量与标准化, 2007(3):8-11.
[8] Li P . The imaging elements of 3D printing[J].Printing Quality and Standardization,2007(3):8-11.
[9] 周立权 . 光栅立体印刷图像处理技术研究[J]. 包装工程, 2010,31(3):107-110,136.
[9] Zhou L Q . Research on image-processing technology of stereoscopic printing[J]. Packaging Engineering, 2010,31(3):107-110,136.
[10] 董永贵, 沈立, 冯冠平 , 等. 一种基于柱透镜光栅的计算机辅助彩色立体图片合成方法[J].光学技术, 1999(3):66-68.
doi: 10.3321/j.issn:1002-1582.1999.03.016 url:
[10] Dong Y G, Shen L, Feng G P , et al. Computer-aided composite method of the lenticular screen covering color stereo-image[J].Optical Technology,1999(3):66-68.
[11] 康立民 . 立体照片的拍摄及合成[J]. 北京机械工业学院学报, 1996,11(2):30-42.
[11] Kang L M . Discusses shoot and composite of the stereogram[J]. Journal of Beijing Institute of Machinery Industry, 1996,11(2):30-42.
[12] 大越孝敬. 三维成像技术[M]. 董太和译.北京: 机械工业出版社, 1982.
[12] Takanori. Three-Dimensional Imaging Techniques[M]. Dong T H, transl.Beijing:China Machine Press, 1982.
[13] 侯卫兵 . 大幅面彩色喷涂系统及相关技术的研究[D]. 北京:清华大学, 1997.
[14] Ignat’ev N K . Two modes of operation of a lens array for obtaining integral photography[J]. Soviet Journal of Optical Technology, 1983,50(1):6-8.
[15] Pollard S B, Mayhew J E W, Frisby J P . Implementation details of the PMF stereo algorithm[M] //Mayhew J E W, Frisby J P.3D Model Recognition from Stereoscopic Cues.Cambridge:MIT Press, 1991.
[16] 黄敏, 刘浩学 . 立体印刷制作工艺光栅板参数的选择[J]. 北京印刷学院学报, 2005,13(1):9-12.
[16] Huang M, Liu H X . Selecting of the parameters of cylindrical lens sheet imaging in 3D printing[J]. Journal of Beijing Institute of Graphic Communication, 2005,13(1):9-12.
[17] 范景辉, 李梅, 郭小方 , 等. 基于PSInSAR方法和ASAR数据监测天津地面沉降的试验研究[J]. 国土资源遥感, 2007,19(4):23-27.doi: 10.6046/gtzyyg.2007.04.05.
doi: 10.3969/j.issn.1001-070X.2007.04.005 url:
[17] Fan J H, Li M, Guo X F , et al. A preliminary study of the subsidence in Tianjin area using asar images based on psinsar technique[J]. Remote Sensing for Land and Resources, 2007,19(4):23-27.doi: 10.6046/gtzyyg.2007.04.05.
[18] 王润生, 熊盛青, 聂洪峰 , 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011,85(11):1699-1743.
[18] Wang R S, Xiong S Q, Nie H F , et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011,85(11):1699-1743.
[19] 范景辉, 燕云鹏, 葛大庆 , 等. 全国地表形变遥感地质(InSAR)调查技术指南[M]. 北京: 地质出版社, 2015.
[19] Fan J H, Yan Y P, Ge D Q , et al. Technical Guidance on Remote Sensing Geological Survey Based on InSAR for Ground Deformation in China[M]. Beijing: Geological Publishing House, 2015.
[1] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[2] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[3] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[4] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[5] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[6] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
[7] WANG Baocun, ZHU Lin, PAN Deng, GUO Lingfei, PENG Peng. Research on temporal and spatial evolution law of land subsidence in Zhengzhou[J]. Remote Sensing for Land & Resources, 2020, 32(3): 143-148.
[8] Yike SUN, Huili GONG, Beibei CHEN, Chaofan ZHOU, Wenfeng CHEN, Xiaojing ZHANG. Quantitative analysis of uneven subsidence by Moran’s I and cross wavelet[J]. Remote Sensing for Land & Resources, 2020, 32(2): 186-195.
[9] Chong YANG, Guoxiang LIU, Bing YU, Bo ZHANG, Rui ZHANG, Xiaowen WANG. Inversion of reservoir parameters in Shuguang Oil Production Plant of the Liaohe Oilfield based on InSAR deformation[J]. Remote Sensing for Land & Resources, 2020, 32(1): 209-215.
[10] Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway[J]. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
[11] Xiaojing ZHANG, Beibei CHEN, Kunchao LEI, Wenfeng CHEN, Mingliang GAO, Chaofan ZHOU, Guangyao DUAN. Characteristics of land subsidence along Beijing-Tianjin inter-city railway (Beijing section)[J]. Remote Sensing for Land & Resources, 2019, 31(1): 171-179.
[12] Xiaobo ZHANG, Xuesheng ZHAO, Daqing GE, Bin LIU, Ling ZHANG, Man LI, Yan WANG. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique[J]. Remote Sensing for Land & Resources, 2018, 30(4): 200-205.
[13] CHEN Jiwei, ZENG Qiming, JIAO Jian, ZHAO Binchen. SBAS time series analysis technique based on Sentinel-1A TOPS SAR images: A case study of Yellow River Delta[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 82-87.
[14] WANG Haiqing, YANG Jinzhong, CHEN Ling, WANG Jie, ZHOU Yingjie, YAO Weiling. Remote sensing investigation of restoration and management situation in coal mine subsidence areas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 156-162.
[15] WANG Xiaohong, JING Qingqing, ZHOU Yingjie, YAO Weiling. Remote sensing dynamic monitoring of coal mine subsidence disaster in Shandong Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 203-210.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech