Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 125-132     DOI: 10.6046/gtzyyg.2019.01.17
|
A study of block adjustment of domestic multi-source high resolution satellite images
Wei ZHANG, Jianwei QI(), Ying CHEN, Xu HAN
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(3270 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Error precision analysis is the important guarantee of block adjustment (BA) of multi-source remote sensing data, because it not only guarantees the edge accuracy of different source data, but also improves the stability of the whole regional network adjustment. With the development of the domestic satellite, the multi-source BA has been applied to it; however, the research on precision analysis of multi-source BA and the relationship between multi-source and single-source BA is relatively deficient. According to RPC (rational polynomial coefficient), an experiment that has constructed the multi-source BA model of multi-source remote sensing data based on domestic satellite (GF-1, GF-2, ZY-3) of Chongqing area was carried out in this paper, where a series of effects of BA to correct the systematic errors and the relationship between multi-source and single-source BA were in-depth analyzed under the different plans of control points. The results show that the BA of domestic multi-source high resolution satellite images is feasible, which can also improve the accuracy for single-source BA.

Keywords domestic high resolution satellite images      multi-source remote sensing data      block adjustment      rational function mode      error precision analysis     
:  TP79  
Corresponding Authors: Jianwei QI     E-mail: 29970092@qq.com
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei ZHANG
Jianwei QI
Ying CHEN
Xu HAN
Cite this article:   
Wei ZHANG,Jianwei QI,Ying CHEN, et al. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.17     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/125
Fig.1  Study area and data
策略名称 布控策略描述
策略1 没有控制点,仅依靠初始RPC模型精度
策略2 中心单点布控,控制点1个
策略3 周边四角点布控+中心控制点,控制点5个
策略4 周边匀均增加控制点,控制点9个
策略5 周边均匀增加控制点,控制点30个
策略6 中心及周边均匀增加控制点,控制点60个
策略7 均匀增加控制点,控制点100个
策略8 进一步均匀增加控制点,控制点160个
策略9 全部为控制点,参与定向,控制点176个
Tab.1  Strategy of GCPs for multi-source block adjustment
策略名称 策略描述 卫星类型
GF-1 GF-2 ZY-3
策略1 无控定向 0 0 0
策略2 中心单点布控 1 1 1
策略3 周围四角点+中心单点 5 5 5
策略4 周边均匀增加 9 9 9
策略5 继续扩充周边控制点 18 18 15
策略6 中心及周边均匀增加控制点 30 30 19
策略7 整体均匀增加控制点 44 45 23
策略8 进一步均匀增加控制点 60 60 27
策略9 全部作为控制点 70 77 29
Tab.2  Strategy of GCPs for both single-source and multi-source block adjustment
控制策略 定向控制点RMSE 检查点RMSE
点数 X Y 点数 X Y
策略1 0 0 0 176 108.523 13.435
策略2 1 44.511 4.38 175 57.421 10.887
策略3 5 15.472 2.457 171 25.832 7.238
策略4 9 10.051 2.129 167 17.106 5.767
策略5 30 5.025 4.818 146 7.033 4.009
策略6 60 4.732 4.365 116 5.685 3.683
策略7 100 4.401 3.872 76 5.521 3.277
策略8 160 4.747 3.612 16 4.803 2.300
策略9 176 4.051 2.980 0 0 0
Tab.3  Error precision of multi-source block adjustment in different Strategy of GCPs(m)
卫星数据处理方案 连接点RMSE
点数 X Y
GF-1单一数据源 1 017 0.12 0.14
GF-2单一数据源 1 158 0.13 0.24
ZY-3单一数据源 126 0.09 0.08
GF-1/GF-2/ZY-3多源 4 080 0.16 0.27
  
Fig.2  Relation between check points’ RMSE of multi-source block adjustment and number of GCPs
Fig.3  Residual distribution of CPs and GCPs of multi-source block adjustment
控制
策略
点个数 GF-1单源平差 多源平差(GF-2/ZY-3)
GCP CP RMSE_X RMSE_Y RMSE_X RMSE_Y
策略1 0 70 144.553 24.493 107.051 14.787
策略2 1 69 54.835 11.067 49.096 6.126
策略3 5 65 22.659 7.205 24.05 4.989
策略4 9 61 10.488 5.432 11.629 4.733
策略5 18 52 4.581 4.103 6.851 4.503
策略6 30 40 4.023 3.000 5.573 3.673
策略7 44 26 4.082 3.034 4.34 3.362
策略8 60 10 3.342 2.522 2.934 2.488
策略9 70 0 0 0 0 0
Tab.5  Error precision of single and multi-source block adjustment for GF-1 satellite
控制
策略
点个数 GF-2单源平差 多源平差(GF-1/ZY-3)
GCP CP RMSE_X RMSE_Y RMSE_X RMSE_Y
策略1 0 77 85.541 43.059 109.163 14.787
策略2 1 76 34.202 16.917 54.41 6.771
策略3 5 72 22.659 7.205 18.401 3.109
策略4 9 68 13.574 4.292 11.477 3.727
策略5 18 59 6.409 3.053 6.826 2.797
策略6 30 47 5.409 2.482 5.621 2.592
策略7 45 32 5.042 2.474 4.949 2.430
策略8 60 17 5.395 2.789 5.280 2.526
策略9 77 0 0 0 0 0
Tab.6  Error precision of single and multi-source block adjustment for GF-2 satellite
控制
策略
点个数 ZY-3单源平差 多源平差(GF-1/GF-2)
GCP CP RMSE_X RMSE_Y RMSE_X RMSE_Y
策略1 0 29 96.366 20.664 106.013 19.919
策略2 1 28 15.503 5.439 53.528 5.985
策略3 5 24 5.790 3.927 24.322 4.704
策略4 9 20 3.916 2.373 9.904 3.066
策略5 15 14 2.803 2.778 7.303 3.024
策略6 19 10 3.248 2.459 6.376 2.877
策略7 23 6 3.029 2.079 5.051 2.562
策略8 27 2 0.435 1.801 3.882 1.999
策略9 29 0 0 0 0 0
Tab.7  Error precision of single and multi-source block adjustment for ZY-3 satellite
Fig.4  Relation between check points’ RMSE of single or multi-source block adjustment of GF-1 and number of GCPs
Fig.5  Relation between check points’ RMSE of single or multi-source block adjustment of GF-2 and number of GCPs
Fig.6  Relation between check points’ RMSE of single or multi-source block adjustment of ZY-3 and number of GCPs
[1] 张过, 李德仁, 袁修孝 , 等. 卫星遥感影像的区域网平差成图精度[J]. 测绘科学技术学报, 2006,23(4):239-241,245.
doi: 10.3969/j.issn.1673-6338.2006.04.002 url: http://d.wanfangdata.com.cn/Periodical_chxyxb200604002.aspx
[1] Zhang G, Li D R, Yuan X X , et al. The mapping accuracy of satellite imagery block adjustment[J]. Journal of Geomatics Science and Technology, 2006,23(4):239-241,245.
[2] Tao C V, Hu Y . A comprehensive study of the rational function model for photogrammetric processing[J]. Photogrammetric Engineering and Remote Sensing, 2001,67(12):1347-1358.
[3] Grodecki J, Dial G . Block adjustment of high-resolution satellite images described by rational polynomials[J]. Photogrammetric Engineering and Remote Sensing, 2003,69(1):59-68.
doi: 10.14358/pers.69.1.59 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=69&issue=1&spage=59
[4] 李德仁, 张过, 江万寿 , 等. 缺少控制点的SPOT-5 HRS影像RPC模型区域网平差[J]. 武汉大学学报(信息科学版), 2006,31(5):377-381.
doi: 10.3321/j.issn:1671-8860.2006.05.001 url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH200605001.htm
[4] Li D R, Zhang G, Jiang W S , et al. SPOT-5 HRS satellite imagery block adjustment without GCPS or with single GCP[J]. Geomatics and Information Science of Wuhan University, 2006,31(5):377-381.
[5] Lee Y, Habib A, Kim K . A Study on aerial triangulation from Multi-Sensor Imagery[J].Korean Journal of Remote Sensing, 2003(3):255-261.
[6] Toutin T . Spatiotriangulation with multisensor HR stereo-images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(2):456-462.
doi: 10.1109/TGRS.2005.861005 url: http://ieeexplore.ieee.org/document/1580730/
[7] 宋妍, 范高晶, 左佳 . 多源高空间分辨率遥感图像平差方法[J]. 国土资源遥感, 2013,25(2):21-26.doi: 10.6046/gtzyyg.2013.02.04.
doi: 10.6046/gtzyyg.2013.02.04 url: http://www.cnki.com.cn/Article/CJFDTotal-GTYG201302005.htm
[7] Song Y, Fan G J, Zuo J . Adjustment model for remote sensing images with high spatial resolution from multi-sensors[J]. Remote Sensing for Land and Resources, 2013,25(2):21-26.doi: 10.6046/gtzyyg.2013.02.04.
[8] Toutin T . Spatiotriangulation with multisensor VIR/SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing. 2004,42(10):2096-2103.
doi: 10.1109/TGRS.2004.834638 url: http://ieeexplore.ieee.org/document/1344162/
[9] 秦绪文 . 基于拓展RPC模型的多源卫星遥感影像几何处理[D].中国地质大学(北京), 2007.
[9] Qin X W . Geometry Processing for Remote Sensing Image Based on Expanded RPC Model[D].China University of Geosciences(Beijing), 2007.
[10] 刘彩娟, 杨柳忠, 张宁 , 等. 基于高分一号与高分二号联合平差精度验证[J].建设科技, 2016(4):51-54.
doi: 10.16116/j.cnki.jskj.2016.04.017 url: http://www.cnki.com.cn/Article/CJFDTotal-KJJS201604020.htm
[10] Liu C J, Yang L Z, Zhang N , et al. The verification of block adjustment precision based on GF1 and GF2[J].Construction Science and Technology, 2016(4):51-54.
[11] 刘军, 张永生, 王冬红 . 基于RPC模型的高分辨率卫星影像精确定位[J]. 测绘学报, 2006,35(1):30-34.
doi: 10.3321/j.issn:1001-1595.2006.01.007 url: http://www.cnki.com.cn/Article/CJFDTotal-CHXB200601006.htm
[11] Li J, Zhang Y S, Wang D H . Precise positioning of high spatial resolution satellite images based on RPC models[J]. Acta Geodaetica et Cartographica Sinica, 2006,35(1):30-34.
[12] Fraser C S, Hanley H B . Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery[J].Photogrammetric Engineering and Remote Sensing, 2005(8):909-915.
[1] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[2] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[3] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[4] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[5] JINAG Wei, HE Guojin, LONG Tengfei, YIN Ranyu, SONG Xiaolu, YUAN Yiqin, LING Saiguang. Ortho accuracy validation and analysis of GF-2 PAN imagery based on Beidou satellite navigation system and GPS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 211-216.
[6] HAN Jie, XIE Yong, WU Guoxi, LIU Qiyue, GAO Hailiang, GUAN Xiaoguo. Geo-positioning accuracy analysis for domestic high-resolution satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 100-107.
[7] PAN Hongbo, ZOU Zhengrong, ZHANG Guo, ZHANG Yunsheng, WANG Taoyang. Block adjustment of high resolution satellite image using RFM with the same stripe constraint[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 46-52.
[8] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[9] LIU Xinxing, CHEN Jianping, ZENG Min, DAI Jingjing, PEI Yingru, REN Mengyi, WANG Na. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
[10] HAN Jie, GU Xingfa, YU Tao, XIE Yong, ZHENG Fengjie, ZHANG Feng. Block adjustment for ZY-3 satellite images based on RFM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 64-71.
[11] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[12] LIU Bin, SUN Xi-liang, DI Kai-chang, LIU Zhao-qin. Accuracy Analysis and Validation of ZY-3’s Sensor Corrected Products[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 36-40.
[13] LI Feng, GAO Zhao-Liang. A Hybrid Bayesian Network Classifier for Multi-source Remote Sensing Data in Land Use Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 47-52.
[14] GUO Da-hai, WU Li-xin, WANG Jian-chao, ZHENG Xiong-wei . A PRELIMINARY DISCUSSION ON DIRECT GEOREFERENCING OF INTEGRATED GPS/IMU[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(2): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech