|
|
|
|
|
|
Research on image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage |
Shangwang LIU1,2( ), Liuyang GAO1,2, Bo WANG1,2 |
1.College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China 2.Engineering Lab of Intelligence Business and Internet of Things, Xinxiang 453007, China |
|
|
Abstract Aim ing at overcoming the shortcomings of existing denoising algorithms, such as the poor denoising capability, the noise error evaluation, and the damaging of the image edge and texture details, this paper proposes an image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage. Firstly, the original noise image is divided into high-contrast and low-contrast layers by bilateral filter. Secondly, different appropriate filters are employed for different hierarchical layers. i.e., the bilateral filter and wavelet threshold shrinkage are adopted for high-contrast and low-contrast layers, respectively. Finally, the final denoising image is obtained by integrating high-contrast with low-contrast layers’ denoising images, which suppresses noises and at the same time enhances the image more efficiently. Experimental results show that peak signal to noise ratio (PSNR) of this method reaches 40.99 dB, which is higher than the ratio of non-local means filter, bilateral filter, wavelet threshold shrinkage and partial differential equation algorithms by 7.79%, 3.56%, 11.22% and 1.91%, respectively. Moreover, the proposed algorithm can not only remove the noises efficiently but also preserve the image edge and texture details very well.
|
Keywords
bilateral filter
wavelet threshold shrinkage
peak signal to noise ratio
image edge
texture
|
|
Issue Date: 30 May 2018
|
|
|
[1] |
Knaus C, Zwicker M. Dual-domain image denoising [C]//Proceedings of 20th IEEE International Conference on Image Processing.Melbourne:IEEE, 2013: 440-444.
|
[2] |
张倩 . 基于双重离散小波变换的遥感图像去噪算法[J]. 国土资源遥感, 2015,27(4):14-20.doi: 10.6046/gtzyyg.2015.04.03.
doi: 10.6046/gtzyyg.2015.04.03
|
[2] |
Zhang Q . Remote sensing image de-noising algorithm based on double discrete wavelet transform[J]. Remote Sensing for Land and Resources, 2015,27(4):14-20.doi: 10.6046/gtzyyg.2015.04.03.
|
[3] |
Huang Q G, Hao B Y, Chang S . Adaptive digital ridgelet transform and its application in image denoising[J]. Digital Signal Processing, 2016,52:45-54.
doi: 10.1016/j.dsp.2016.02.004
url: http://linkinghub.elsevier.com/retrieve/pii/S1051200416000324
|
[4] |
Buades A, Coll B, Morel J M .A non-local algorithm for image denoising[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:IEEE, 2005: 60-65.
|
[5] |
谭茹, 李婷婷, 李伟伟 , 等. 图像去噪的自适应非局部均值滤波方法[J]. 小型微型计算机系统, 2014,35(1):137-141.
doi: 10.3969/j.issn.1000-1220.2014.01.028
url: http://d.wanfangdata.com.cn/Periodical/xxwxjsjxt201401028
|
[5] |
Tan R, Li T T, Li W W , et al. Adaptive non-local means filtering method for image denoising[J]. Journal of Chinese Computer Systems, 2014,35(1):137-141.
|
[6] |
黄智, 付兴武, 刘万军 . 混合相似性权重的非局部均值去噪算法[J]. 计算机应用, 2016,36(2):556-562.
doi: 10.11772/j.issn.1001-9081.2016.02.0556
|
[6] |
Huang Z, Fu X W, Liu W J . Non-local means denoising algorithm with hybrid similarity weight[J]. Journal of Computer Applications, 2016,36(2):556-562.
|
[7] |
周兵, 韩媛媛, 徐明亮 , 等. 快速非局部均值图像去噪算法[J]. 计算机辅助设计与图形学学报, 2016,28(8):1260-1268.
|
[7] |
Zhou B, Han Y Y, Xu M L , et al. A fast non-local means image denoising algorithm[J]. Journal of Computer-Aided Design and Computer Graphics, 2016,28(8):1260-1268.
|
[8] |
Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of the 6th International Conference on Computer Vision. Bombay:IEEE, 2010: 839-846.
|
[9] |
杨学志, 徐勇, 方静 , 等. 结合区域分割和双边滤波的图像去噪新算法[J]. 中国图象图形学报, 2012,17(1):40-48.
doi: 10.11834/jig.20120106
url: http://d.wanfangdata.com.cn/Periodical/zgtxtxxb-a201201006
|
[9] |
Yang X Z, Xu Y, Fang J , et al. New filter based on region segmentation and bilateral filtering[J]. Journal of Image and Graphics, 2012,17(1):40-48.
|
[10] |
Ramesh S.An efficient approach for removal of universal noise using adaptive based switching bilateral filter[C]//Proceedings of 2012 International Conference on Advances in Engineering,Science and Management.Nagapattinam:IEEE, 2012: 462-467.
|
[11] |
袁华, 庞建铿, 莫建文 . 基于噪声分类的双边滤波点云去噪算法[J]. 计算机应用, 2015,35(8):2305-2310.
doi: 10.11772/j.issn.1001-9081.2015.08.2305
url: http://www.cqvip.com/QK/94832X/201508/665663330.html
|
[11] |
Yuan H, Pang J K, Mo J W . Denoising algorithm for bilateral filtered point cloud based on noise classification[J]. Journal of Computer Applications, 2015,35(8):2305-2310.
|
[12] |
杨燕 . 基于变分偏微分方程的图像去噪及其快速算法[D]. 南京:南京邮电大学, 2015.
|
[12] |
Yang Y . Image Denoising Based on Calculus of Variations and Partial Differential Equations,and Its Fast Algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015.
|
[13] |
Halim S A, Ibrahim A, Sulong T N N T,et al.Fourth-order partial differential equation noise removal on welding images[J]. AIP Conference Proceedings, 2015,1682(1):020050.
doi: 10.1063/1.4932459
url: http://aip.scitation.org/doi/abs/10.1063/1.4932459
|
[14] |
芦碧波, 李阳, 王永茂 . 结合松弛中值滤波的高阶彩色图像迭代去噪算法[J]. 应用光学, 2016,37(3):366-371.
|
[14] |
Lu B B, Li Y, Wang Y M . Color image denoising using high order iterating model by combining relaxed median filter[J]. Journal of Applied Optics, 2016,37(3):366-371.
|
[15] |
Donoho D L, Johnstone I M . Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994,81(3):425-455.
doi: 10.1093/biomet/81.3.425
url: https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/81.3.425
|
[16] |
王蓓, 张根耀, 李智 , 等. 基于新阈值函数的小波阈值去噪算法[J]. 计算机应用, 2014,34(5):1499-1502.
doi: 10.11772/j.issn.1001-9081.2014.05.1499
url: http://d.wanfangdata.com.cn/Periodical_jsjyy201405063.aspx
|
[16] |
Wang B, Zhang G Y, Li Z , et al. Wavelet threshold denoising algorithm based on new threshold function[J]. Journal of Computer Applications, 2014,34(5):1499-1502.
|
[17] |
Zhao R M, Cui H M. Improved threshold denoising method based on wavelet transform [C]//Proceedings of the 7th International Conference on Modelling,Identification and Control.Sousse:IEEE, 2015: 1-4.
|
[18] |
胡然, 郭成城, 杨剑锋 . 基于小波阈值和主成分分析的视频去噪算法[J]. 计算机科学, 2016,43(4):290-293.
doi: 10.11896/j.issn.1002-137X.2016.4.059
url: http://d.wanfangdata.com.cn/Periodical/jsjkx201604059
|
[18] |
Hu R, Guo C C, Yang J F . Video denoising algorithm based on wavelet threshold and PCA[J]. Computer Science, 2016,43(4):290-293.
|
[19] |
Zhang S, Jing H J.Fast log-gabor-based nonlocal means image denoising methods[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Paris:IEEE, 2014: 2724-2728.
|
[20] |
魏宁, 杨元琴, 董方敏 , 等. 多模图像交叉双域滤波算法[J]. 中国图象图形学报, 2016,21(6):691-697.
doi: 10.11834/jig.20160602
url: http://www.cqvip.com/QK/90287A/201606/669146609.html
|
[20] |
Wei N, Yang Y Q, Dong F M , et al. Cross dual-domain filter for denoising multi-mode images[J]. Journal of Image and Graphics, 2016,21(6):691-697.
|
[21] |
Lexin A, Nadler B, Durand F, et al. Patch complexity,finite pixel correlations and optimal denoising [C]//Proceedings of the 12th European Conference on Computer Vision.Florence:Springer, 2012: 73-86.
|
[22] |
Chen Q, Montesinos P, Sun Q S , et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010,28(3):298-306.
doi: 10.1016/j.imavis.2009.04.012
url: http://linkinghub.elsevier.com/retrieve/pii/S0262885609000791
|
[23] |
Liu J, Wang Y H, Su K J , et al. Image denoising with multidirectional shrinkage in directionlet domain[J]. Signal Processing, 2016,125:64-78.
doi: 10.1016/j.sigpro.2016.01.013
url: http://linkinghub.elsevier.com/retrieve/pii/S016516841600030X
|
[24] |
张凡 . 基于改进NAS-RIF算法的遥感噪声图像自适应复原[J]. 国土资源遥感, 2015,27(2):105-111.doi: 10.6046/gtzyyg.2015.02.17.
doi: 10.6046/gtzyyg.2015.02.17
url: 年度引用
|
[24] |
Zhang F . Self-adaptive restoration for remote sensing noise images based on improved NAS-RIF algorithm[J]. Remote Sensing for Land and Resources, 2015,27(2):105-111.doi: 10.6046/gtzyyg.2015.02.17.
|
[25] |
吴一全, 吴超 . 结合NSCT和KPCA的高光谱遥感图像去噪[J]. 遥感学报, 2012,16(3):533-544.
doi: 10.11834/jrs.20121018
url: http://www.cqvip.com/QK/92457A/201203/41860840.html
|
[25] |
Wu Y Q, Wu C . Denoising of hyperspectral remote sensing images using NSCT and KPCA[J]. Journal of Remote Sensing, 2012,16(3):533-544.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|