Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (s1) : 34-38     DOI: 10.6046/gtzyyg.2017.s1.06
Orginal Article |
Destriping model of GF-2 image based on moment matching
CUI Jian1, SHI Penghui1, BAI Weiming2, LIU Xiaojing1
1. Henan Institute of Geological Survey, Zhengzhou 450001, China;
2. Henan Aero Geophysical Survey and Remote Sensing Center, Zhengzhou 450001, China
Download: PDF(1040 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Gaofen 2(GF-2) is China’s first civil optical remote sensing satellite with spatial resolution better than 1 m. It has five bands, with wave length range from visible to near infrared light and spatial resolution under star as precise as 0.8 m. Randomly streaking noise was found in the work, which affected interpretation and information extraction. According to the features of GF-2 image stripe, the destriping of GF-2 image was carried out by using moment matching. Then, the destriping result was analyzed by qualitative or quantitative analysis methods. The results show that moment matching can effectively eliminate the streaking noise of the GF-2.
Keywords heuristics      optimization      agricultural area      high resolution remote sensing image(HRI)     
Issue Date: 24 November 2017
E-mail this article
E-mail Alert
Articles by authors
SU Tengfei
ZHANG Shengwei
LI Hongyu
Cite this article:   
SU Tengfei,ZHANG Shengwei,LI Hongyu. Destriping model of GF-2 image based on moment matching[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 34-38.
URL:     OR
[1] Ahern F J,Brwon R J,Cihlar J,et al.Radiometric correction of visible and infrared remote sensing data at the Canada Centre for Remote Sening[J].International Joumal of Remote Sensing,1987,8(9):1349-1376.
[2] Crippen R E.A simple spatial filtering routine for the cosmetric removal of scan-line noise from Landsat TM P-tape imagery[J].Photogram-metric Engineering and Remote Sensing,1989,55(3):327-331.
[3] Gadallah F L,Csillag F,Smith E J M.Destriping multisensor imagery with moment matching[J].International Joumal of Remote Sensing,2000,21(12):2505-2511.
[4] Sun L,Neville R,Staenz K,et al.Automatic destriping of Hyperion imagery based on spectral moment matching[J].Canadian Journal of Remote Sensing,2008,34(S1):S68-S81.
[5] 牛生丽,唐军武,蒋兴伟,等.HY-1A卫星COCTS数据条带消除的两种定量化方法比较[J].遥感学报,2007,11(6):327-331.
Niu S L,Tang J W,Jiang X W,et al.The comparison of two quantitative striping removal algorithms for HY-1A COCTS data[J].Journal of Remote Sensing,2007,11(6):327-331.
[6] 修吉宏,翟林培,刘 红.CCD图像条带噪声消除方法[J].电子器件,2005,28(4):719-721.
Xiu J H,Zhai L P,Liu H.Method of removing striping noise in CCD image[J].Chinese Journal of Electron Devices,2005,28(4):719-721.
[7] 秦 雁,邓孺孺,何颖清,等.分段线性动态矩匹配条带去除[J].中国图象图形学报,2012,17(11):1444-1452.
Qin Y,Deng R R,He Y Q,et al.Piece-wise linear dynamic moment matching destriping[J].Journal of Image and Graphics,2012,17(11):1444-1452.
[8] 贺 霖,潘 泉,邸 韡,等.一种基于单似然检验的高光谱图像小目标检测器[J].光学学报,2007,27(12):2155-2162.
He L,Pan Q,Di W,et al.A small-target detector based on single likelihood test for hyperspectral imagery[J].Acta Optica Sinica,2007,27(12):2155-2162.
[9] Wegener M.Destriping multiple sensor imagery by improved histogram matching[J].International Journal of Remote Sensing,1990,11(5):859-875.
[10] 陈雪洋,袁 超.ZY-1 02C卫星影像融合方法评价[J].测绘与空间地理信息,2013,36(2):50-53.
Chen X Y,Yuan C.Data fusion evaluation of ZY-1 02C satellite images[J].Geomatics and Spatial Information Technology,2013,36(2):50-53.
[11] Chavez Jr P S,Sides S C,Anderson J A.Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J].Photogrammetric Engineering and Remote Sensing,1991,57(3):295-303.
[12] 崔 璨.基于对比分析的国产卫星影像质量评价[D].长春:吉林大学,2014.
Cui C.The Quality Assessment of Domestic Satellite Images Based on Contrastive Analysis[D].Changchun:Jilin University,2014.
[1] XIAO Yehui, SONG Nidi, MENG Panpan, WANG Peijun, FAN Shenglong. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm[J]. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
[2] XU Tianyu, ZHAO Xuesheng, CHEN Fangxin, YANG Yi. Research on the spatialization of population on the Belt and Road based on optimization of multi-divisional modeling indexes[J]. Remote Sensing for Land & Resources, 2021, 33(2): 153-161.
[3] LI Li, HU Xiao, PENG Jun. Fog removal effect optimization of aerial image based on dark channel prior[J]. Remote Sensing for Land & Resources, 2021, 33(1): 108-114.
[4] JIANG Lei, HAN Weizheng, SUN Lina. A study on regional ecological barrier construction based on landscape ecological risk[J]. Remote Sensing for Land & Resources, 2020, 32(4): 219-226.
[5] ZHANG Hongli, LUO Weiran, LI Yan. Spatiotemporal fusion of remote sensing images based on particle swarm optimization and pixel decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(4): 33-40.
[6] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[7] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[8] Jinlong DU, Jiwei ZHU, Jiancang XIE, Zenghui MA. An overview of urban land use research based on GIS[J]. Remote Sensing for Land & Resources, 2018, 30(3): 9-17.
[9] Tengfei SU, Shengwei ZHANG, Hongyu LI. High resolution remote sensing image segmentation using super-pixel MRF for agricultural area[J]. Remote Sensing for Land & Resources, 2018, 30(1): 37-44.
[10] ZHENG Xiongwei, WEI Yingjuan, LI Chunying, LEI Bing, GAN Yuhang. The realization of intelligent optimization based on multi-source and massive domestic satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 13-20.
[11] SU Tengfei, ZHANG Shengwei, LI Hongyu. Heuristics optimized segmentation of agricultural area for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 106-113.
[12] ZHANG Tao, YANG Xiaomei, TONG Liqiang, HE Peng. Selection of best-fitting scale parameters in image segmentation based on multiscale segmentation image database[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 59-63.
[13] YU Feifei, ZENG Yongnian, XU Yanyan, ZHENG Zhong, LIU Zhaosong, WANG Jun, HE Jinqiang. Intelligent remote sensing classification of multi-character data based on vegetation partition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 63-70.
[14] LI Ling-ling, ZHU Wen-quan, PAN Yao-zhong, CAO Sen, ZHU Zai-chun. Research on Multi-spectral Image Segmentation of Agriculture Area Based on High Precision Historical Cropland Parcels[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 20-25.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech