Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 138-145     DOI: 10.6046/zrzyyg.2021245
|
DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field
LI Zhu1(), FAN Hongdong1(), GAO Yantao2, XU Yaozong1
1. Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China
2. Institute of Surveying Mapping and Geoinformation, Henan Bureau of GEO-Exploration and Mineral Development, Zhengzhou 450006, China
Download: PDF(4317 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Coal fire not only wastes a lot of coal resources but also severely damages the ecological environment of the fire area. However, conventional monitoring methods suffer disadvantages such as a small scope, low frequency, high cost, and great danger. Therefore, this study developed a monitoring method of coal field fire based on the distributed scatterer interferometric synthetic aperture Radar (DS-InSAR) technology. This method successively selects homogeneous pixels using the fast statistically homogeneous pixels selection (FaSHPS) algorithm, optimizes the phases of these pixels using the eigenvalue decomposition method, obtains the final distributed targets based on the temporal coherence, and calculates the time-series surface deformation by combining the small baseline subsets (SBAS) InSAR technique. Taking 63 scenes of Sentinel-1A images from March 2017 to April 2019 as the data source, this study obtained the time series surface subsidence in the Wuda coal field using this method and then verified the reliability of the results by comparison with the monitoring results obtained using the temporarily coherent point interferometric synthetic aperture Radar (TCP-InSAR) technology. As a result, the correlation coefficient between the two methods was 0.84, but the density of monitoring sites obtained using the method proposed in this study was 1.24 times higher than that of TCP-InSAR. The monitoring results show that the surface of the Wuda coal field deforms severely, with a maximum deformation rate of -215 mm/a, and that the deformation occurs more rapidly during autumn and winter and has multiple extensional directions and multiple subsidence centers at varying degrees.

Keywords DS-InSAR      deformation monitoring      coal fire monitoring      long time series      fire area of Wuda coal field     
ZTFLH:  TP79  
Corresponding Authors: FAN Hongdong     E-mail: lizhu@cumt.edu.cn;cumtfanhd@163.com
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhu LI
Hongdong FAN
Yantao GAO
Yaozong XU
Cite this article:   
Zhu LI,Hongdong FAN,Yantao GAO, et al. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021245     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/138
Fig.1  The study area
Fig.2  Data processing flow chart
Fig.3  Surface deformation rate of Wuda coal field
Fig.4  Correlation diagram and differential distribution histogram of deformation rate of the same point pairs of TCP-InSAR and DS-InSAR
Fig.5  Time series cumulative diagram of surface deformation in Wuda coal field
Fig.6  Feature point time series deformation graph
Fig.7  Three-dimensional deformation map of typical coal fire area
Fig.8  Cumulative deformation map of the profile of a typical coal fire area
[1] Song Z, Kuenzer C, Zhu H, et al. Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat8 remote sensing data[J]. International Journal of Coal Geology, 2015,141-142:91-102.
[2] Kuenzer C, Zhang J, Sun Y, et al. Coal fires revisited:The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities[J]. International Journal of Coal Geology, 2012, 102:75-86
doi: 10.1016/j.coal.2012.07.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0166516212001814
[3] Liang Y, Liang H, Zhu S. Mercury emission from coal seam fire at Wuda,Inner Mongolia,China[J]. Atmospheric Environment, 2014, 83:176-184.
doi: 10.1016/j.atmosenv.2013.09.001 url: https://linkinghub.elsevier.com/retrieve/pii/S1352231013006882
[4] 张志敏, 江利明, 柳林, 等. 利用Landsat热红外影像探测地下煤火区范围——以乌达煤田为例[J]. 测绘通报, 2018(3):93-97.
[4] Zhang Z M, Jiang L M, Liu L, et al. Detecting the underground coal fire by using Landsat thermal infrared imagery:Taking Wuda coalfield as an example[J]. Bulletin of Surveying and Mapping, 2018(3):93-97.
[5] Du X, Cao D, Mishra D, et al. Self-adaptive gradient-based thresholding method for coal fire detection using ASTER thermal infrared data,part I:Methodology and decadal change detection[J]. Remote Sensing, 2015, 7(6):6576-6610.
doi: 10.3390/rs70606576 url: http://www.mdpi.com/2072-4292/7/6/6576
[6] 李峰, 梁汉东, 赵小平, 等. 内蒙古乌达煤田煤火治理效果的遥感监测与评估[J]. 国土资源遥感, 2017, 29(3):217-223.doi: 10.6046/gtzyyg.2017.03.32.
doi: 10.6046/gtzyyg.2017.03.32
[6] Li F, Liang H D, Zhao X P, et al. Remote sensing monitoring and assessment of fire-fighting effects in Wuda coal field,Inner Mongolia[J]. Remote Sensing for Land and Resources, 2017, 29(3):217-223.doi: 10.6046/gtzyyg.2017.03.32.
doi: 10.6046/gtzyyg.2017.03.32
[7] Li F, Li J, Liu X, et al. Coal fire detection and evolution of trend analysis based on CBERS-04 thermal infrared imagery[J]. Environmental Earth Sciences, 2020, 79(16):1-15.
doi: 10.1007/s12665-019-8746-6 url: https://doi.org/10.1007/s12665-019-8746-6
[8] 蒋卫国, 武建军, 顾磊, 等. 基于夜间热红外光谱的地下煤火监测方法研究[J]. 光谱学与光谱分析, 2011, 31(2):357-361.
[8] Jiang W G, Wu J J, Gu L, et al. Monitoring method of undergound coal fire based on nigth thermal infrared remote sensing technology[J]. Spectroscopy and Spectral Analysis, 2011, 31(2):357-361.
[9] 郑美楠, 邓喀中, 陈华, 等. 时序累积DInSAR与GIS结合的矿区沉降监测与分析[J]. 煤矿安全, 2017, 48(1):160-163.
[9] Zheng M N, Deng K Z, Chen H, et al. Monitoring and analysis of mining subsidence base on timing accumulation DInSAR and GIS[J]. Safety in Coal Mines, 2017, 48(1):160-163.
[10] 赵立峰, 范洪冬, 渠俊峰, 等. 基于DS-InSAR的张双楼煤矿长时序地表形变监测方法[J]. 金属矿山, 2021(8):142-149.
[10] Zhao L F, Fan H D, Qu J F, et al. Long time-series surface deformation method of Zhangshuanglou coal mine based on DS-InSAR[J]. Metal Mine, 2021(8):142-149.
[11] Voigt S, Tetzlaff A, Zhang J, et al. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China[J]. Elsevier, 2004, 59(1-2):121-136.
[12] Xu Y, Fan H, Dang L. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection[J]. International Journal of Remote Sensing, 2021, 42(6):2220-2245.
doi: 10.1080/01431161.2020.1823045 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1823045
[13] Liu J, Wang Y, Yan S, et al. Underground coal fire detection and monitoring based on Landsat8 and Sentinel-1 data sets in Miquan fire area,Xinjiang[J]. Remote Sensing, 2021, 13(6):1141.
doi: 10.3390/rs13061141 url: https://www.mdpi.com/2072-4292/13/6/1141
[14] 许怡, 范洪冬, 党立波. 基于TIRS和TCP-InSAR的新疆广域煤田火区探测方法[J]. 金属矿山, 2019(10):164-171.
[14] Xu Y, Fan H D, Dang L B. Detection method of fire area in Xinjiang wide area coalfield based on TIRS and TCP-InSAR[J]. Metal Mine, 2019(10):164-171.
[15] Liu J, Wang Y, Li Y, et al. Underground coal fires identification and monitoring using time-series InSAR with persistent and distributed scatterers:A case study of Miquan coal fire zone in Xinjiang,China[J]. IEEE Access, 2019, 7:164492-164506.
doi: 10.1109/ACCESS.2019.2952363 url: https://ieeexplore.ieee.org/document/8894356/
[16] Riyas M, Syed T, Kumar H, et al. Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield,India using Sentinel-1 SAR data[J]. Remote Sensing, 2021, 13(8):1521.
doi: 10.3390/rs13081521 url: https://www.mdpi.com/2072-4292/13/8/1521
[17] Zhou L, Zhang D, Wang J, et al. Mapping land subsidence related to underground coal fires in the Wuda coalfield (Northern China) using a small stack of ALOS PALSAR differential interferograms[J]. Remote Sensing, 2013, 5(3):1152-1176.
doi: 10.3390/rs5031152 url: http://www.mdpi.com/2072-4292/5/3/1152
[18] 黄昭权, 张登荣, 王帆, 等. 基于差分干涉SAR的煤田火区地表形变监测[J]. 国土资源遥感, 2010, 22(4):85-90.doi: 10.6046/gtzyyg.2010.04.18.
doi: 10.6046/gtzyyg.2010.04.18
[18] Huang Z Q, Zhang D R, Wang F, et al. Differential SAR interfero-metry for the monitoring of underground coal spontaneous combustion zone surface deformation[J]. Remote Sensing for Land and Resources, 2010, 22(4):85-90.doi: 10.6046/gtzyyg.2010.04.18.
doi: 10.6046/gtzyyg.2010.04.18
[19] Jiang L, Lin H, Ma J, et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires:Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2):257-268.
doi: 10.1016/j.rse.2010.08.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710002488
[20] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
doi: 10.1109/TGRS.2011.2124465 url: http://ieeexplore.ieee.org/document/5765671/
[21] Jiang M, Ding X, Hanssen R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3):1213-1224.
doi: 10.1109/TGRS.2014.2336237 url: http://ieeexplore.ieee.org/document/6866873/
[22] Cao N, Lee H, Jung H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1838-1842.
doi: 10.1109/LGRS.2015.2430752 url: http://ieeexplore.ieee.org/document/7111268/
[23] 张建明, 管海晏, 曹代勇, 等. 中国地下煤火研究与治理[M]. 北京: 煤炭工业出版社, 2008:12-21.
[23] Zhang J M, Guan H Y, Cao D Y, et al. Underground coal fires in China:Origin,detection,fire-fighting,and prevention[M]. Beijing: China Coal Industry Publishing House, 2018:12-21.
[1] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[2] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[3] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[4] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[5] LYU Guijun, LI Yingcheng, BAI Jie, ZHAO Yali. A tentative discussion on the geographical condition monitoring method based on long time series Landsat data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 126-132.
[6] LIU Zhimin, LI Yongsheng, ZHANG Jingfa, LUO Yi, LIU Bin. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 37-42.
[7] HUANG Zhao-Quan, ZHANG Deng-Rong, WANG Fan, DANG Fu-Xing, LI Zhi-Zhong. Differential SAR Interferometry for the Monitoring of Underground Coal Spontaneous Combustion Zone Surface Deformation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech