Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 198-209     DOI: 10.6046/zrzyyg.2021042
|
Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019
SONG Qi1(), FENG Chunhui1, MA Ziqiang2, WANG Nan3, JI Wenjun4, PENG Jie1()
1. College of Agriculture, Tarim University, Alar 843300, China
2. Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing 100871, China
3. College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
4. College of Land Science and Technology, China Agricultural University, Beijing 100083, China
Download: PDF(9825 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to explore the land use change and its future development trend in the Aral reclamation area, a typical artificial oasis in the arid region in northwest China and to provide a reference for the regulation and management of land use change in similar areas. After the multi-temporal synthesis of monthly images of each year, annual land use classification maps were obtained using the support vector machine method. Then, the land use change was analyzed from the aspects of area change, type transformation, and spatial dynamic change. Finally, the cellular automaton (CA)-Markov model was used to simulate the land use change in 2050 and 2080, and the sudden changes and their driving factors were explored using the cumulative departure method and the path analysis. The results of this study are as follows. During 1990—2019, the area of arable land, garden land, water bodies, and construction land in the Aral reclamation area showed an increasing trend. Among them, the arable land and garden land increased in area mainly due to the conversion of unused land outside the areas along the Tarim River. By 2080, the unused land in the northeastern and southeastern parts of the reclamation area will be gradually reclaimed. As a result, arable land, garden land, and construction land will significantly increase. The area of various types of land use in the Aral reclamation reached a turning point in 2005, showing a sharp increase in the area of arable land, garden land, and building land. This was mainly driven by total population, gross agricultural product, and cotton prices. It can be concluded that it is necessary to develop policies on the sustainable development of arable land, to strictly control the area of construction land, and to construct a reasonable land use structure in future land development and utilization.

Keywords land use change      dynamic simulation of land space      long time series      driving factors     
ZTFLH:  TP79  
Corresponding Authors: PENG Jie     E-mail: tarimsongqi@163.com;pjzky@163.com
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi SONG
Chunhui FENG
Ziqiang MA
Nan WANG
Wenjun JI
Jie PENG
Cite this article:   
Qi SONG,Chunhui FENG,Ziqiang MA, et al. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021042     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/198
Fig.1  Geographic position of study area
Fig.2  Remote sensing data
Fig.3  Multi-temporal remote sensing image synthesis
类型 地表特征 影像特征 影像 照片
耕地 棉地、小麦地、玉米地、高粱地等 浅绿色,形状规则,一般为长条,均匀分布
林草地 胡杨林、草场、柽柳等 黄色或深黄色,形状不规则,一般分布在河流、道路两侧以及偏远地区
园地 苹果地、枣地、葡萄地、香梨地等 黄色,形状相对规则,多呈矩形,有明显边界线,连片分布
水体 河流、沟渠、水库等 白色或浅紫色,形状规则,有明显边界线
建设用地 城镇、学校、广场、工业用地等 灰色或深紫色,形状规则,周边常有规则的行道树,有明显边界线,连片分布
未利用地 湿地、裸石、盐碱地、沙地等 灰色或深紫色,形状不规则,多分布于偏远地区
Tab.1  Classification system and interpretation signs of Alar reclamation area
Fig.4  Number and distribution of sample points for each category
Fig.5  Classification results of different data sources
土地利用类型 Landsat8
(2019年)
Landsat7
(2010年)
Landsat5
(1990年)
制图精
度/%
用户精
度/%
制图精
度/%
用户精
度/%
制图精
度/%
用户精
度/%
耕地 93.19 90.14 91.30 89.91 90.55 88.43
林草地 87.49 93.47 85.81 93.41 85.14 92.36
园地 76.46 94.52 75.55 93.52 75.22 92.18
水体 84.18 95.65 82.06 93.98 81.36 92.46
建设用地 82.76 82.11 82.58 81.04 81.17 80.17
未利用地 98.27 88.66 98.16 86.74 97.01 85.12
Kappa系数 0.88 0.85 0.82
总体精度/% 90.05 89.82 88.29
Tab.2  Accuracy evaluation of different data sources
Fig.6  Land use change in Alar reclamation area from 1990 to 2019
Fig.7  The area change of land use types in Alar reclamation area from 1990 to 2019
1990年
2019年 耕地 林草地 园地 水体 建设用地 未利用地 合计
耕地 14.09 832.59 4.94 0.00 664.57 1 516.19
林草地 0.38 0.36 0.58 0.00 4.64 5.97
园地 349.64 8.81 15.69 0.00 1 160.44 1 534.58
水体 2.86 6.77 15.84 0.00 103.36 128.82
建设用地 16.11 8.60 11.59 0.04 1.48 37.82
未利用地 0.00 1.36 0.00 0.00 1.28 2.64
合计 368.99 39.63 860.38 21.25 1.28 1 934.48
Tab.3  Transformation matrix of land use types in Alar reclamation area from 1990 to 2019(km2)
Fig.8  Characteristics of land use change in Alar reclamation area in different time periods
Fig.9  Dynamic changes of land use in Alar reclamation area in different time periods
Fig.10  Comparison of real and simulated situation of land use in Alar reclamation area in 2010
预测类别 合计 用户精度/%
真实类别 耕地 林草地 园地 水体 建设用地 未利用地
耕地 54 617 750 923 0 867 2 667 59 824 91.30
林草地 858 182 058 3 536 10 328 1 939 13 453 212 172 85.81
园地 5 272 3 880 65 696 1 062 342 10 701 86 953 75.55
水体 0 5 94 184 256 0 40 170 224 525 82.06
建设用地 0 0 0 0 14 146 2 984 17 130 82.58
未利用地 0 8 189 0 208 161 457 741 466 299 98.16
合计 60 747 194 896 70 249 196 053 17 455 527735 1067 135
制图精度/% 89.91 93.41 93.52 93.98 81.04 86.74
Tab.4  The accuracy evaluation of land use simulation in Alar Reclamation Area in 2010
Fig.11  Land use simulation situation of Alar reclamation area in 2050 and 2080
年份 耕地 林草地 园地 水体 建设用地 未利用地
面积/km2 百分
比/%
面积/km2 百分
比/%
面积/km2 百分
比/%
面积/km2 百分
比/%
面积/km2 百分
比/%
面积/km2 百分
比/%
2050年 1 679.32 40.90 388.42 9.46 1 285.56 31.31 345.31 8.41 104.29 2.54 303.02 7.38
2080年 1 727.77 42.08 330.94 8.06 1 368.50 33.33 349.82 8.52 207.76 5.06 121.12 2.95
Tab.5  The area change of each land use types of Alar reclamation area in 2050 and 2080
Fig.12  Analysis on the abrupt change of land use type area in Alar reclamation area
[1] 董祚继. 从土地利用规划到国土空间规划——科学理性规划的视角[J]. 中国土地科学, 2020, 34(5):1-7.
[1] Dong Q J. From land-use planning to territorial space planning:A perspective of scientific and rational planning[J]. China Land Science, 2020, 34(5):1-7.
[2] 胡苏李扬, 李辉, 顾延生, 等. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 自然资源遥感, 2021, 33(1):221-230.doi: 10.6046/gtzyyg.2020100.
doi: 10.6046/gtzyyg.2020100
[2] Hu S L Y, Li H, Gu Y S, et al. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high reso-lution remote sensing images:Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land and Resources, 2021, 33(1):221-230.doi: 10.6046/gtzyyg.2020100.
doi: 10.6046/gtzyyg.2020100
[3] Yu H, Liu X M, Kong B, et al. Landscape ecology development supported by geospatial technologies:A review[J]. Ecological Informatics, 2019, 51:185-192.
doi: 10.1016/j.ecoinf.2019.03.006 url: https://linkinghub.elsevier.com/retrieve/pii/S1574954119300329
[4] 高文龙, 苏腾飞, 张圣微, 等. 矿区地物分类及土地利用/覆盖变化动态监测——以海流兔流域为例[J]. 自然资源遥感, 2020, 32(3):232-239.doi: 10.6046/gtzyyg.2020.03.30.
doi: 10.6046/gtzyyg.2020.03.30
[4] Gao W L, Su T F, Zhang S W, et al. Classification of objects and LUCC dynamic monitoring in mining area:A case study of Hailiutu watershed[J]. Remote Sensing for Land and Resources, 2020, 32(3):232-239.doi: 10.6046/gtzyyg.2020.03.30.
doi: 10.6046/gtzyyg.2020.03.30
[5] Guo Y, Fang G, Xu Y P, et al. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin,East China[J]. Science of the Total Environment, 2020, 710:136275.
doi: 10.1016/j.scitotenv.2019.136275 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969719362710
[6] Chen L D, Liu Y, Lyu Y H, et al. Pattern analysis in landscape ecolo-gy:Progress,challenges and outlook[J]. Acta Ecologica Sinica, 2008, 28(11):5521-5531.
doi: 10.1016/S1872-2032(09)60011-1 url: https://linkinghub.elsevier.com/retrieve/pii/S1872203209600111
[7] 杜金龙, 朱记伟, 解建仓, 等. 基于GIS的城市土地利用研究进[J]. 自然资源遥感, 2018, 30(3):9-17.doi: 10.6046/gtzyyg.2018.03.02.
doi: 10.6046/gtzyyg.2018.03.02
[7] Du J L, Zhu J W, Xie J C, et al. An overview of urban land use research based on GIS[J]. Remote Sensing for Land and Resources, 2018, 30(3):9-17.doi: 10.6046/gtzyyg.2018.03.02.
doi: 10.6046/gtzyyg.2018.03.02
[8] 张瑜, 赵晓丽, 左丽君, 等. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 自然资源遥感, 2019, 31(3):132-139.doi: 10.6046/gtzyyg.2019.03.17.
doi: 10.6046/gtzyyg.2019.03.17
[8] Zhang Y, Zhao X L, Zuo L J, et al. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land and Resources, 2019, 31(3):132-139.doi: 10.6046/gtzyyg.2019.03.17.
doi: 10.6046/gtzyyg.2019.03.17
[9] Wang Y H, Dai E F, Yin L, et al. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region,China[J]. Ecosystem Services, 2018, 34(a):55-67.
doi: 10.1016/j.ecoser.2018.09.008 url: https://linkinghub.elsevier.com/retrieve/pii/S2212041618300652
[10] Wang J, Chen Y Q, Shao X M, et al. Land-use changes and policy dimension driving forces in China:Present,trend and future[J]. Land Use Policy, 2012, 29(4):737-749.
doi: 10.1016/j.landusepol.2011.11.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837711001372
[11] Wu J G. Landscape ecology[J]. Encyclopedia of Ecology(Second Edition), 2019, 4:527-531.
[12] Antrop M. The language of landscape ecologists and planners:A comparative content analysis of concepts used in landscape ecology[J]. Landscape and Urban Planning, 2001, 55(3):163-173.
doi: 10.1016/S0169-2046(01)00151-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204601001517
[13] Liu Y L, Luo T, Liu Z Q, et al. A comparative analysis of urban and rural construction land use change and driving forces:Implications for urbanerural coordination development in Wuhan[J]. Central China.Habitat International, 2015, 47:113-125.
[14] Kabisch N, Selsam P, Kirsten T, et al. A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes[J]. Ecological Indicators, 2019, 99:273-282.
doi: 10.1016/j.ecolind.2018.12.033
[15] Zhao L, Huang W, Chen J, et al. Land use/cover changes in the Oriental migratory locust area of China:Implications for ecological control and monitoring of locust area[J]. Agriculture,Ecosystems and Environment, 2020, 303:107110.
doi: 10.1016/j.agee.2020.107110 url: https://linkinghub.elsevier.com/retrieve/pii/S0167880920302966
[16] Shen S G, Yue P, Fan C J. Quantitative assessment of land use dynamic variation using remote sensing data and landscape pattern in the Yangtze River delta,China[J]. Sustainable Computing:Informatics and Systems, 2019, 23:111-119.
doi: 10.1016/j.suscom.2019.07.006 url: https://linkinghub.elsevier.com/retrieve/pii/S2210537919300101
[17] Wang X C, Dong X B, Liu H M, et al. Linking land use change,ecosystem services and human well-being:A case study of the Manas River basin of Xinjiang,China[J]. Ecosystem Services, 2017, 27(a):113-123.
doi: 10.1016/j.ecoser.2017.08.013 url: https://linkinghub.elsevier.com/retrieve/pii/S2212041617301195
[18] Jia B Q, Zhang Z Q, Ci L G, et al. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang,China[J]. Journal of Arid Environments, 2004, 56(1):11-26.
doi: 10.1016/S0140-1963(03)00002-8 url: https://linkinghub.elsevier.com/retrieve/pii/S0140196303000028
[19] Tian G J, Liu J Y, Xie Y C, et al. Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS[J]. Cities, 2005, 22(6):400-410.
doi: 10.1016/j.cities.2005.05.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0264275105000545
[20] 岳东霞, 杨超, 江宝骅, 等. 基于CA-Markov模型的石羊河流域生态承载力时空格局预测[J]. 生态学报, 2019, 39(6):1993-2003.
[20] Yue D X, Yang C, Jiang B H, et al. Spatio-temporal pattern prediction of the biocapacity in the Shiyang River basin on the basis of the CA-Markov model[J]. Acta Ecologica Sinica, 2019, 39(6):1993-2003.
[21] 郭瑞琦, 陆波, 陈恺霖. 基于CLUMondo模型的多情景土地利用变化动态模拟——以广西沿海城市为例[J]. 自然资源遥感, 2020, 32(1):176-183.doi: 10.6046/gtzyyg.2020.01.24.
doi: 10.6046/gtzyyg.2020.01.24
[21] Guo R Q, Lu B, Chen K L. Dynamic simulation of multi-scenario land use change based on CLUMondo model:A case study of coastal cities in Guangxi[J]. Remote Sensing for Land and Resources, 2020, 32(1):176-183.doi: 10.6046/gtzyyg.2020.01.24.
doi: 10.6046/gtzyyg.2020.01.24
[22] 季翔, 黄炎和, 林金石, 等. 基于CA-Markov模型与ANUDEM内插法的崩岗侵蚀量预估[J]. 农业工程学报, 2018, 34(21):128-136.
[22] Ji X, Huang Y H, Lin J S, et al. Estimation of erosion amount in collapsed gully based on CA-Markov model and ANUDEM interpolation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21):128-136.
[23] 成超男, 胡杨, 冯尧, 等. 基于CA-Markov模型的城市生态分区构建研究——以晋中主城区为例[J]. 生态学报, 2020, 40(4):1455-1462.
[23] Chen C N, Hu Y, Feng Y, et al. Construction of urban ecological zones based on CA-Markov model:A case study of the main urban of Jinzhong[J]. Acta Ecologica Sinica, 2020, 40(4):1455-1462.
[24] Matsa M, Mupepi O, Musasa T, et al. A GIS and remote sensing aided assessment of land use/cover changes in resettlement areas:A case of ward 32 of Mazowe district,Zimbabwe[J]. Journal of Environmental Management, 2020, 276:111312.
doi: S0301-4797(20)31235-4 pmid: 32927188
[25] 夏芳. 钱塘江流域气候变化及其对水文径流的影响[D]. 杭州:浙江大学, 2016.
[25] Xia F. Climate change in the Qiantang River basin and its influence on local runoff[D]. Hangzhou:Zhejiang University, 2016.
[26] Zhuang Q W, Wu S X, Yan Y Y, et al. Monitoring land surface thermal environments under the background of landscape patterns in arid regions:A case study in Aksu River basin[J]. Science of the Total Environment, 2020, 710(25):136336.
doi: 10.1016/j.scitotenv.2019.136336 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969719363326
[27] 陶帅, 邝婷婷, 彭文甫, 等. 2000—2015年长江上游NDVI时空变化及驱动力——以宜宾市为例[J]. 生态学报, 2020, 40(14):5029-5043.
[27] Tao S, Kuang T T, Peng W F, et al. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015:A case study of Yibin City[J]. Acta Ecologica Sinica, 2020, 40(14):5029-5043.
[28] Fan Q D, Ding S Y. Landscape pattern changes at a county scale:A case study in Fengqiu,Henan Province,China from 1990 to 2013[J]. Catena, 2016, 137:152-160.
doi: 10.1016/j.catena.2015.09.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816215301120
[29] 袁静文, 武辰, 杜博, 等. 高分五号高光谱遥感影像的城市土地利用景观格局分析[J]. 遥感学报, 2020, 24(4):465-478.
[29] Yuan J W, Wu C, Du B, et al. Analysis of landscape pattern on urban land use based on GF-5 hyperspectral data[J]. Journal of Remote Sensing, 2020, 24(4):465-478.
[30] 朱永森, 曾永年, 张猛. 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取[J]. 农业工程学报, 2017, 33(14):258-265.
[30] Zhu Y S, Zeng Y N, Zhang M. Extract of land use/cover information based on HJ satellites data and object-oriented classification[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14):258-265.
[31] 朱金峰, 周艺, 王世新, 等. 1975—2018年白洋淀湿地变化分析[J]. 遥感学报, 2019, 23(5):971-986.
[31] Zhu J F, Zhou Y, Wang S X, et al. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing[J]. Journal of Remote Sensing, 2019, 23(5):971-986.
[32] 刘敬杰, 夏敏, 刘友兆, 等. 基于多智能体与CA结合模型分析的农村土地利用变化驱动机制[J]. 农业工程学报, 2018, 34(6):242-252.
[32] Liu J J, Xia M, Liu Y Z, et al. Driving mechanism of rural land use change based on multi-agent system and cellular automata[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):242-252.
[33] 王兆林, 牙升业, 蒲海霞, 等. 基于改进CA-Markov模型的山地城市边缘区土地利用变化模拟[J]. 农业工程学报, 2020, 36(16):239-248.
[33] Wang Z L, Ya S Y, Pu H X, et al. Simulation of spatiotemporal variation of land use in mountainous-urban fringes based on improved CA-Markov model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16):239-248.
[34] 李少英, 刘小平, 黎夏, 等. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 2017, 21(3):329-340.
[34] Li S Y, Liu X P, Li X, et al. Simulation model of land use dynamics and application:Progress and prospects[J]. Journal of Remote Sensing, 2017, 21(3):329-340.
[1] YANG Lianwei, ZHAO Juan, ZHU Jiatian, LIU Lei, ZHANG Ping. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.
[2] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[3] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[4] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[5] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[6] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[7] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
[8] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[9] Zhaohua LIU, Chunyan ZHANG. Dynamic monitoring and driving factors analysis of urban expansion in Kaifeng[J]. Remote Sensing for Land & Resources, 2018, 30(4): 193-199.
[10] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[11] ZHANG Dengrong, XU Siying, XIE Bin, WU Wenyuan, LU Haifeng. Land use change of reclaimed mud flats in Jiaojiang-Taizhou Estuary in the past 40 years based on remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 101-106.
[12] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
[13] ZHAO Peng. Land use dynamic remote sensing monitoring at the initial stage of exploitation of the Xinjie Taigemiao mining area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 144-149.
[14] LYU Guijun, LI Yingcheng, BAI Jie, ZHAO Yali. A tentative discussion on the geographical condition monitoring method based on long time series Landsat data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 126-132.
[15] FANG Xiu-qin, REN Li-liang, LI Qiong-fang. The Detection and Analysis of Land Use Change in the Laoha River Basin During the Past Four Decades[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech