Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (4) : 1-7     DOI: 10.6046/gtzyyg.2012.04.01
Review |
Advances in the Study of Land Surface Emissivity Retrieval from Passive Microwave Remote Sensing
WU Ying1,2, WANG Zhen-hui1,2
1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(1018 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The microwave land surface emissivity(MLSE)is a very important parameter for describing the characteristics of the lands, and it is also a key factor for retrieving the parameters of land and atmosphere. Space-borne passive microwave radiometers provide direct retrieved land surface emissivity spectra with larger temporal and spatial scales compared with physical modeling simulation in that the physical modeling simulation needs plenty of parameters, but quite a few of these parameters, such as parameters of land surface and vegetation, are not available from traditional measurements. This paper systematically reviews MLSE retrieving algorithms for passive microwave remote sensing data, which include statistical approach, atmospheric radiation transfer model approach, index analysis approach, neural network approach and one-dimensionally variational analysis approach. The main advantages and limitations of these five methods are also discussed. Finally, the development tendencies of estimating MLSE by remote sensing are pointed out, such as developing algorithms of Radio Frequency Interference (RFI) detection and correction, improving algorithms of detection of clouds and rain-affected radiances, and intensive research on microwave atmospheric radiation transfer process.

Keywords debris flow      SPOT5      DEM      automatic extraction     
:  TP 79  
  TP 722.6  
Issue Date: 13 November 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Fei
YANG Shu-wen
LI Yi-kun
LIU Tao
Cite this article:   
XIE Fei,YANG Shu-wen,LI Yi-kun, et al. Advances in the Study of Land Surface Emissivity Retrieval from Passive Microwave Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 1-7.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.04.01     OR     https://www.gtzyyg.com/EN/Y2012/V24/I4/1

[1] Felde G W,Pickle J D.Retrieval of 91 and 150GHz Earth Surface Emissivities[J].J Geophys Res,1995,100(D10):20855-20866.



[2] Jun L,Wolf W W,Menzel W P,et al.Global Soundings of the Atmosphere from ATOVS Measurements:The Algorithm and Validation[J].J Appl Meteor,2000,39(8):1248-1268.



[3] Weng F Z,Yan B H,Grody N C.A Microwave Land Emissivity Model[J].J Geophys Res,2001,106(D17):20115-20123.



[4] Jackson T J.Measuring Surface Soil Moisture Using Passive Microwave Remote Sensing[J].Hydro Proc,1993,7(2):139-152.



[5] Jackson T J,Le Vine D M,Swift C T,et al.Large Area Mapping of Soil Moisture Using the ESTAR Passive Microwave Radiometer in Washita’92[J].Remote Sens Environ,1995,54(1):27-37.



[6] Jackson T J,Le Vine D M,Hsu A Y,et al.Soil Moisture Mapping at Regional Scales Using Microwave Radiometry:The Southern Great Plains Hydrology Experiment[J].IEEE Trans Geosci Remote Sens,1999,37(5):2136-2151.



[7] Njoku E G,Jackson T J,Lakshmi V,et al.Soil Moisture Retrieval from AMSR-E[J].IEEE Trans Geosci Remote Sens,2003,41(2):215-229.



[8] Pellerin T,Wigneron J P,Calvet J C,et al.Global Soil Moisture Retrieval from a Synthetic L-band Brightness Temperature Data Set[J].J Geophys Res,2003,108(D12):4364,doi:10.1029/2002JD003086.



[9] Shi J C,Chen K S,Li Q,et al.A Parameterized Surface Reflectivity Model and Estimation of Bare-surface Soil Moisture with L-band Radiometer[J].IEEE Trans Geosci Remote Sens,2002,40(12):2674-2686.



[10] Wigneron J P,Calvet J C,Pellarin T,et al.Retrieving Near-surface Soil Moisture from Microwave Radiometric Observations: Current Status and Future Plans[J].Remote Sens Environ,2003,85(4):489-506.



[11] Calvet J C,Wigneron J P,Mougin E,et al.Plant Water Content and Temperature of the Amazon Forest from Satellite Microwave Radiometry[J].IEEE Trans Geosci Remote Sens,1994,32(2):397-408.



[12] Dash P,Göttsche F M,Olesen F S,et al.Land Surface Temperature and Emissivity Estimation from Passive Sensor Data:Theory and Practice-current Trends[J].Inter J Remote Sens,2002,23(13):2563-2594.



[13] Fily M,Royer A,Goöta K,et al.A Simple Retrieval Method for Land Surface Temperature and Fraction of Water Surface Determination from Satellite Microwave Brightness Temperatures in Sub-arctic Areas[J].Remote Sens Environ,2003,85:328-338.



[14] Prigent C,Aires F,Rossow W B.Land Surface Skin Temperatures from a Combined Analysis of Microwave and Infrared Satellite Observations for an All-weather Evaluation of the Differences Between Air And Skin Temperatures[J].J Geophys Res,2003,108(D10):4310,doi:10.1029/2002JD002301.



[15] Pulliainen J T,Grandell J,Hallikainen M T.Retrieval of Surface Temperature in Boreal Forest Zone from SSM/I Data[J].IEEE Trans Geosci Remote Sens,1997,35(5):1188-1200.



[16] Weng F Z,Grody N C.Physical Retrieval of Land Surface Temperature Using the Special Sensor Microwave Imager[J].J Geophys Res,1998,103(D8):8839-8848.



[17] 毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005(3):14-18.



Mao K B,Shi J C,Li Z L,et al.The Land Surface Temperature and Emissivity Retrieved from the AMSR Passive Microwave Data[J].Remote Sensing for Land and Resources,2005(3):14-18(in Chinese with English Abstract).



[18] 毛克彪,施建成,李召良,等.一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J].中国科学D辑:地球科学,2006,36(12):1170-1176.



Mao K B,Shi J C,Li Z L,et al.A Physical Statistic Algorithm for the Land Surface Temperature from the AMSR-E Passive Microwave Data[J].Science in China(Series D:Earth Sciences),2006,36(12):1170-1176(in Chinese with English Abstract).



[19] 宫晓蕙,金亚秋."嫦娥一号"微波辐射计观测月球虹湾地区表面物理温度昼夜时间分布[J].科学通报,2011,56(23):1877-1886.



Gong X H,Jin Y Q.Diurnal Distribution of the Physical Temperature at Sinus Iridum Area Retrieved from Observations of CE-1 Microwave Radiometer[J].Chinese Sci Bull,2011,56(23):1877-1886(in Chinese with English Abstract).



[20] Hewison T J,English S J.Airborne Retrievals of Snow and Ice Surface Emissivity at Millimeter Wavelengths[J].IEEE Trans Geosci Remote Sens,1999,37(4):1871-1879.



[21] Kelly G,Bauer P.The Use of AMSU-A Surface Channels to Obtain Surface Emissivity over Land,Snow and Ice for Numerical Weather Prediction[C] // Proc 11th Internation TOVS Study Conference.Budapest,Hungary,2000:167-179.



[22] Kelly R E,Chang A T,Tsang L,et al.A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm[J].IEEE Trans Geosci Remote Sens,2003,41(2):230-242.



[23] 车涛,李新,晋锐.利用被动微波遥感低频亮温数据监测青海湖封冻与解冻期[J].科学通报,2009,54(6):787-791.



Che T,Li X,Jin R.Monitoring the Frozen Duration of Qinghai Lake Using Satellite Passive Microwave Remote Sensing Low Frequency Data[J].Chinese Sci Bull,2009,54(6):787-791(in Chinese with English Abstract).



[24] Grody N C.Severe Storm Observations Using the Microwave Sounding Unit[J].J Climate App Meteor,1983,22(2):609-625.



[25] (NOAA)Satellite-earth Observing Laboratory,Digital Earth Emissivity Information System(DEEIS)[EB/OL].http://www.eol.ucar.edu/projects/gapp/dm/satellite/noaa_list.html.



[26] Wilke G D,McFarland M J.Correlations Between Nimbus-7 Scanning Multichannel Microwave Radiometer Data and an Antecedent Precipitation Index[J].J Climate App Meteor,1986,25(2):227-238.



[27] Pan G D,Wang C,Wang H M,et al.Microwave Emissivity Retrieval from SSM/I Data over Land in China[C] //Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Honolulu,HI:IEEE,2000:923-925.doi:10.1109/IGARSS.2000.861745.



[28] Felde G W,Pickle J D.Retrieval of 91 and 150 GHz Earth Surface Emissivities[J].J Geophys Res,1995,100(D10):20855-20866.



[29] Jones A S,Vonder T H.Passive Microwave Remote Sensing of Cloud Liquid Water over Land Regions[J].J Geophys Res,1990,95(D10):16673-16683.



[30] Prigent C,Rossow W B,Matthews E.Microwave Land Surface Emissivities Estimated from SSM/I Observations[J].J Geophys Res,1997,102(D18):21867-21890.



[31] Prigent C,Aires F,Rossow W B.Land Surface Microwave Emissivities over the Globe for a Decade[J].Bull Am Meteor Soc,2006,87(11):1573-1584.



[32] Ruston B C,Vonder Haar T H.Characterization of Summertime Microwave Emissivities from the Special Sensor Microwave Imager over the Conterminous United States[J].J Geophys Res,2004,109D19103.doi:10.1029/2004JD004890.



[33] Hong G,Heygester G,Qunzi K,et al.Retrieval of Microwave Surface Emissivities at TMI Frequencies in Shouxian[J].Adv Atmos Sci,2003,20(2):253-259.



[34] 何文英,陈洪滨.中国江淮、黄淮地区陆面微波比辐射率的变化特征[J].遥感技术与应用,2009,24(3):297-303.



He W Y,Cheng H B.The Characteristics of Microwave Emissivity over Land of Chinese Jianghuai-Huanghuai Region[J].Remote Sensing Technology and Application,2009,24(3):297-303(in Chinese with English Abstract).



[35] Karbou F,Prigent C,Eymard L,et al.Microwave Land Emissivity Calculations Using AMSU Measurements[J].IEEE Trans Geosci Remote Sens,2005,43(5):948-959.



[36] Qiu Y B,Shi J C,Hallikainen M T,et al.The AMSR-E Instantaneous Emissivity Estimation and Its Correlation,Frequency Dependency Analysis over Different Land Covers[C] //Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Boston,MA:IEEE,2008:749-752.doi:10.1109/IGARSS.2008.4779102.



[37] 张勇攀,蒋玲梅,邱玉宝,等.不同地物类型微波发射率特征分析[J].光谱学与光谱分析,2010,30(6):1446-1451.



Zhang Y P,Jiang L M,Qiu Y B,et al.Study of the Microwave Emissivity Characteristics over Different Land Cover Types[J].Spectroscopy and Spectral Analysis,2010,30(6):1446-1451(in Chinese with English Abstract).



[38] Norouzi H,Temimi M,Khanbilvardi R.Global Microwave Land Surface Emissivity Retrieval at the AMSR-E Microwave Frequencies[C] // Proceedings of the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).Washington,DC:IEEE,2010:90-95.doi:10.1109/MICRORAD.2010.5559582.



[39] Bytheway J L,Kummerow C D.A Physically Based Screen for Precipitation over Complex Surfaces Using Passive Microwave Observations[J].IEEE Trans Geosci Remote Sens,2010,48(1):299-313.



[40] Jones A S,Vonder Haar T H.Retrieval of Microwave Surface Emittance over Land Using Coincident Microwave and Infrared Satellite Measurements[J].J Geophys Res,1997,102(D12):13609-13626.



[41] Morland J C,Grimes D I F,Hewison T J.Satellite Observations of the Microwave Emissivity of a Semi-arid Land Surface[J].Remote Sens Environ,2001,77(2):149-164.



[42] 潘广东,王超,张卫国,等.SSM/I微波辐射计数据中国陆地覆盖特征季节变化分析[J].遥感学报,2003,7(6):498-503.



Pan G D,Wang C,Zhang W G,et al.Analysis of Seasonal Change of Land Cover Characteristics with SSM/I Data in China[J].Journal of Remote Sensing,2003,7(6):498-503(in Chinese with English Abstract).



[43] 谷松岩,邱红,张文建.先进微波探测器资料反演地表微波辐射率试验[J].电波科学学报,2004,19(4):452-457.



Gu S Y,Qiu H,Zhang W J.Retrieval of Land Surface Microwave Emissivity by Using Satellite-borne AMSU Data[J].Chinese Journal of Radio Science,2004,19(4):452-457(in Chinese with English Abstract).



[44] Aires F,Prigent C,Rossow W B,et al.A New Neural Network Approach Including First Guess for Retrieval of Atmospheric Water Vapor,Cloud Liquid Water Path,Surface Temperature,and Emissivities over Land from Satellite Microwave Observations[J].J Geophys Res,2001,106(D14):14887-14907.



[45] Daley R,Barker E.NAVDAS Source Book 2001:NRL Atmospheric Variational Data Assimilation System[M].Washington,DC:Naval Res Lab,2001:NRL/PU/7530-01-441.



[46] Eyre J R,Kelly G A,NcNally A P,et al.Assimilation of TOVS Radiance Information Through One-dimensional Variational Analysis[J].Q J R Meteor Soc,1993,119(514):1427-1463.



[47] Lorenc A C.Analysis Methods for Numerical Weather Prediction[J].Q J R Meteor Soc,1986,112(474):1177-1194.



[48] Lorenc A C.Optimal Nonlinear Objective Analysis[J].Q J R Meteor Soc,1988,114(479):205-240.



[49] Ruston B,Weng F Z,Yan B H.Use of a One-dimensional Variational Retrieval to Diagnose Estimates of Infrared and Microwave Surface Emissivity over Land for ATOVS Sounding Instruments[J].IEEE Trans Geosci Remote Sens,2008,46(2):393-402.

[1] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[2] CHEN Fuqiang, LIU Yalin, GAO Xu, SONG Minghui, ZHANG Zhanzhong. Application of remote sensing technology to the engineering geological survey for the construction of the China-Nepal railway[J]. Remote Sensing for Natural Resources, 2021, 33(4): 219-226.
[3] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[4] YAN Chi, JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei. The application of UAV oblique photography in debris flow disaster identification and analysis:Taking the debris flow in Caojiafang, Shijiaying, Fangshan District, Beijing as an Example[J]. Remote Sensing for Land & Resources, 2020, 32(4): 251-257.
[5] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[6] Kaixuan LIANG, Guifang ZHANG, Haoran ZHANG. A method for extracting alluvial fan based on DEM and remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 138-145.
[7] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[8] Zongli JIANG, Junli ZHANG, Zhen ZHANG, Shiyin LIU, Junfeng WEI, Wanqin GUO, Chuanguang ZHU, Danni HUANG. Glacier change and mass balance (1972—2011) in Ulugh Muztagh,eastern Kunlun Mountains, monitored by remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 128-136.
[9] Xiaoqi MA, Shanlong LU, Jin MA, Liping ZHU. Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake[J]. Remote Sensing for Land & Resources, 2019, 31(4): 167-173.
[10] Tao CHENG, Guangyong LI, Kai BI. Research on the geospatial correction method of water extracting products considering the characteristics of time points[J]. Remote Sensing for Land & Resources, 2019, 31(2): 96-101.
[11] Qun WANG, Jinghui FAN, Wei ZHOU, Weilin YUAN, Liqiang TONG, Zhaocheng GUO. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
[12] YU Zhoulu, WANG Wenchao, RONG Yi, SHEN Zhangquan. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
[13] YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
[14] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[15] ZHANG Zhijun, PAN Siyuan, LI Ming, WANG Yanhe, XU Yanfeng. Establishment of lithological remote sensing interpretation keys in north Bayan Hara mountain[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 199-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech