Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 159-168     DOI: 10.6046/zrzyyg.2022249
|
Spatio-temporal evolution of ecosystem health in Anhui Province from 1980 to 2015
WANG Zuo1,2(), WANG Meng1,2, WANG Changchang1,2, LI Hu1,2, ZHANG Yun1,2
1. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
2. Engineering Technology Research Center of Resources Environment and GIS, Anhui Normal University, Wuhu 241002, China
Download: PDF(6478 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To explore the ecosystem health of Anhui Province in the context of modern urbanization, this study established an ecosystem health evaluation system for Anhui Province based on time-series land use type data using the vigour-organization-resilience (VOR) model. Then, this study defined the weights of indicators in the evaluation system using the entropy weight method and evaluated the ecosystem health of Anhui Province and its spatio-temporal evolution over the period from 1980 to 2015 on the county scale. The results show that: ① Anhui Province was dominated by counties with an unhealthy ecosystem, followed by counties with a subhealthy ecosystem, both of which accounted for 56.37% and 16.83%, respectively. Spatially, the comprehensive average multiyear health index and average multiyear health grade of Anhui Province’s ecosystem were higher in the south and lower in the north, strongly correlating with the landform type. Areas with Healthy and very healthy ecosystems were mostly distributed in the hilly and mountainous areas in the southern and western parts of the province. In contrast, areas with an unhealthy ecosystem were contiguously distributed in the Huai River Plain, the Jianghuai hilly area, and the plain area along the Yangtze River. Among, Qimen County, Huangshan City exhibited the highest comprehensive ecosystem health index of 0.92, and Luyang District of Hefei City displayed the lowest comprehensive ecosystem health index of about 0.17; ② The overall ecosystem of Anhui Province showed a healthy trend from 1980 to 2015. With 24 counties exhibiting increasing health grades and no counties displaying decreasing health grades, the average provincial health grade increased from unhealthy to subhealthy grades. Nevertheless, 13 counties exhibited decreasing comprehensive health index values, indicating unstable ecosystem health levels and risks of decreasing health grades. The findings of the study can, to some extent, provide a reference for Anhui Province to formulate reasonable land use policies, protect and manage the eco-environment, and optimize ecosystem service functions.

Keywords temporal and spatial evolution      ecosystem      health assessment      Anhui Province     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zuo WANG
Meng WANG
Changchang WANG
Hu LI
Yun ZHANG
Cite this article:   
Zuo WANG,Meng WANG,Changchang WANG, et al. Spatio-temporal evolution of ecosystem health in Anhui Province from 1980 to 2015[J]. Remote Sensing for Natural Resources, 2023, 35(4): 159-168.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022249     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/159
Fig.1  Geomorphological zoning map of Anhui Province
评价子系统 评价指标 公式 描述
活力 林/草地覆盖率C(+) C = A f + A g C A 评价单元内林地、草地面积之和所占比例。其中Af为林地面积; Ag为草地面积; CA为评价单元总面积
组织力 SHDI
(-)
S H D I = - i = 1 m ( p i l n p i ) m为景观类型数量; pi为评价单元内第i类景观类型所占面积的比例。SHDI值越大,表明该区域景观多样性较高
CONTAG(+) C O N T A G = 1 + i = 1 m k = 1 m ( p i ) g i k k = 1 m g i k l n ( p i ) g i k k = 1 m g i k 2 l n m gik为第i类景观类型与第k类景观类型毗邻的斑块数目。CONTAG反映区域优势地类的影响力,其值越大表明景观格局中存在的优势地类间连接程度强,景观破碎化程度低;反之值越小表明景观格局中存在多种小斑块,景观的破碎化程度高
MPS(+) M P S = C A N P NP为评价单元中斑块总数。MPS值越大为景观破碎度越低
人类干扰指数IH(-) I H = A 1 + A 2 C A A1为评价单元中耕地总面积; A2为评价单元中建设用地总面积。IH值越大,人类活动对生态系统影响越大,对生态系统健康的破坏程度越大
弹力 生境质量指数Qxj(+) Q x j = H j 1 - D x j z D x j z + r z Hj为生境类型j的栖息地适宜性,取值范围0~1; r为半饱和常数,取最大生境退化指数Dxj的一半; z为归一化常量,一般情况下设为2.5。其中Dxj为生境退化度[22]。当前景观上栖息地质量的相对水平,数字越大表明生境质量越好
Tab.1  Ecosystem health evaluation system indicators and their description
评价模型 评价子系统 相对于子系统
的权重值
相对于生态系统
健康评价体系
的权重值
生态系统
健康评价
活力(0.279 1) 林/草地覆盖率(1.000 0) 林/草地覆盖率(0.279 1)
组织力
(0.485 3)
SHDI(0.238 8) SHDI(0.115 9)
CONTAG
(0.157 4)
CONTAG
(0.076 4)
MPS(0.171 0) MPS(0.083 0)
人类干扰指数(0.432 8) 人类干扰指数(0.210 1)
弹力(0.235 6) 生境质量指数(1.000 0) 生境质量指数(0.235 6)
Tab.2  Ecosystem health evaluation system and weight in Anhui Province
健康等级 综合指
数范围
健康水平描述
很健康(一级) [0.8, 1.0] 生态系统结构和多样性稳定,功能完整,生态系统恢复力很强,系统维持正常的循环与平衡,极少受到外界干扰
健康(二级) [0.6, 0.8) 生态系统结构与功能较为稳定,生态系统恢复力较强,受到一部分外界干扰,但没有影响其整体稳定性
亚健康(三级) [0.4, 0.6) 生态系统结构受到一定程度影响而发生改变,部分功能可以实现,受到一定程度的外界干扰,产生了一定污染
不健康(四级) [0.2, 0.4) 生态系统结构受到大幅度冲击,大部分功能丧失,生态系统恢复力大幅度下降,部分外界干扰已经造成了严重侵害
病态(五级) [0.0, 0.2) 生态系统结构崩溃,功能退化,系统难以维持正常的生命活动,外界干扰已经超过自身承载能力,系统受到严重污染
Tab.3  Ecosystem health evaluation level and related description in Anhui Province
Fig.2  Spatial distribution of ecosystem vitality
Fig.3  Spatial distribution of ecosystem organization forces
Fig.4  Spatial distribution of ecosystem resilience
Fig.5  Spatial distribution of ecosystem health grades and multi-year average health grades in Anhui Province from 1980 to 2015
Fig.6  Changes in the average ecosystem health integrated index and the area of health grade in Anhui Province, 1980—2015
[1] 王同达, 曹锦雪, 赵永华, 等. 基于PSR模型的陕西省土地生态系统健康评价[J]. 应用生态学报, 2021, 32(5):1563-1572.
doi: 10.13287/j.1001-9332.202105.013
[1] Wang T D, Cao J X, Zhao Y H, et al. Evaluation of land ecosystem health in Shaanxi Province,Northwest China based on PSR Model[J]. Chinese Journal of Applied Ecology, 2021, 32(5):1563-1572.
[2] 陈利顶, 孙然好, 刘海莲. 城市景观格局演变的生态环境效应研究进展[J]. 生态学报, 2013, 33(4):1042-1050.
[2] Chen L D, Sun R H, Liu H L. Eco-environmental effects of urban landscape pattern changes:Progresses,problems,and perspectives[J]. Acta Ecologica Sinica, 2013, 33(4):1042-1050.
doi: 10.5846/stxb url: http://www.ecologica.cn/
[3] 姚焱中, 李诗婷, 苏美蓉, 等. 区县生态系统健康评价方法——以东莞市各镇区为例[J]. 生态学报, 2021, 41(15):5998-6011.
[3] Yao Y Z, Li S T, Su M R, et al. County ecosystem health assessment:A case study of 32 counties in Dongguan City,China[J]. Acta Ecologica Sinica, 2021, 41(15):5998-6011.
[4] Leopole A. Wilderness as a land laboratory[J]. Living Wilderness, 1941, 6(2):3.
[5] Schaeffer D J, Herricks E E, Kerster H W. Ecosystem health:I.measuring ecosystem health[J]. Environmental Management, 1988, 12(4):445-455.
doi: 10.1007/BF01873258 url: http://link.springer.com/10.1007/BF01873258
[6] Rapport D J. What constitutes ecosystem health?[J]. Perspectives in Biology and Medicine, 1989, 33(1):120-132.
doi: 10.1353/pbm.1990.0004 url: http://muse.jhu.edu/content/crossref/journals/perspectives_in_biology_and_medicine/v033/33.1.rapport.html
[7] Rapport D J, Costanza R, McMichael A J. Assessing ecosystem health[J]. Trends in Ecology & Evolution, 1998, 13(10):397-402.
doi: 10.1016/S0169-5347(98)01449-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0169534798014499
[8] Das M, Das A, Mandal A. Research note:Ecosystem Health (EH) assessment of a rapidly urbanizing metropolitan city region of eastern India:A study on Kolkata Metropolitan area[J]. Landscape and Urban Planning, 2020, 204:103938.
doi: 10.1016/j.landurbplan.2020.103938 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204620306915
[9] Xu W, He M, Meng W, et al. Temporal-spatial change of China’s coastal ecosystems health and driving factors analysis[J]. Science of the Total Environment, 2022, 845:157319.
doi: 10.1016/j.scitotenv.2022.157319 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969722044175
[10] 俞鸿千, 蒋齐, 王占军, 等. VOR、CVOR指数在宁夏干旱风沙区荒漠草原健康评价中的应用——以盐池县为例[J]. 草地学报, 2018, 26(3):584-590.
doi: 10.11733/j.issn.1007-0435.2018.03.009
[10] Yu H Q, Jiang Q, Wang Z J, et al. Application of VOR and CVOR index for health assessment of desert steppe in ningxia:Taking Yanchi County for example[J]. Acta Agrestia Sinica, 2018, 26(3):584-590.
[11] Boori M S, Choudhary K, Paringer R, et al. Ecosystem health assessment based on pressure state response framework using remote sensing and geographical information system[J]. IOP Conference Series:Earth and Environmental Science, 2021, 767(1):012038.
doi: 10.1088/1755-1315/767/1/012038
[12] Das S, Pradhan B, Shit P K, et al. Assessment of wetland ecosystem health using the pressure-state-response (PSR) model:A case study of mursidabad district of West Bengal (india)[J]. Sustainability, 2020, 12(15):5932.
doi: 10.3390/su12155932 url: https://www.mdpi.com/2071-1050/12/15/5932
[13] 徐烨, 杨帆, 颜昌宙. 基于景观格局分析的雄安城市湿地生态健康评价[J]. 生态学报, 2020, 40(20):7132-7142.
[13] Xu Y, Yang F, Yan C Z. Ecological health assessment of urban wetland in Xiong’an based on landscape pattern[J]. Acta Ecologica Sinica, 2020, 40(20):7132-7142.
[14] Wu C, Chen W. Indicator system construction and health assessment of wetland ecosystem:Taking Hongze Lake Wetland,China as an example[J]. Ecological Indicators, 2020, 112:106164.
doi: 10.1016/j.ecolind.2020.106164 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X20301011
[15] 张渊. 基于VOR模型的滇池流域生态系统健康多尺度评价研究[D]. 昆明: 云南财经大学, 2020.
[15] Zhang Y. Multi-scale assessment of ecosystem health in Dianchi Lake basin based on VOR model[D]. Kunming: Yunnan University of Finance and Economics, 2020.
[16] 秦奋. 安徽省土地利用数据(1980、1990、1995、2000、2005、2010、2015年)[EB/OL]. 国家科技基础条件平台-国家地球系统科学数据中心-地理资源分中心, 2019. http://gre.geodata.cn.
url: http://gre.geodata.cn
[16] Qin F. Land use data of Anhui Province (1980—2015)[EB/OL]. National Science and Technology Resources Sharing Service Platform-National Earth System Science Data Center-Middle and Lower Yellow River Sub-Center, 2019.
[17] 刘智方, 唐立娜, 邱全毅, 等. 基于土地利用变化的福建省生境质量时空变化研究[J]. 生态学报, 2017, 37(13):4538-4548.
[17] Liu Z F, Tang L N, Qiu Q Y, et al. Temporal and spatial changes in habitat quality based on land-use change in Fujian Province[J]. Acta Ecologica Sinica, 2017, 37(13):4538-4548.
[18] 邓楚雄, 郭方圆, 黄栋良, 等. 基于INVEST模型的洞庭湖区土地利用景观格局对生境质量的影响研究[J]. 生态科学, 2021, 40(2):99-109.
[18] Deng C X, Guo F Y, Huang D L, et al. Research on the impact of land use and landsacpe pattern on habitat quality in Dongting Lake area based on INVEST model[J]. Ecological Science, 2021, 40(2):99-109.
[19] 吴健生, 毛家颖, 林倩, 等. 基于生境质量的城市增长边界研究——以长三角地区为例[J]. 地理科学, 2017, 37(1):28-36.
doi: 10.13249/j.cnki.sgs.2017.01.004
[19] Wu J S, Mao J Y, Lin Q, et al. Urban growth boundary based on the evaluation of habitat quality:Taking the Yangtze River Delta as an example[J]. Scientia Geographica Sinica, 2017, 37(1):28-36.
doi: 10.13249/j.cnki.sgs.2017.01.004
[20] 戴云哲, 李江风, 杨建新. 长沙都市区生境质量对城市扩张的时空响应[J]. 地理科学进展, 2018, 37(10):1340-1351.
doi: 10.18306/dlkxjz.2018.10.004
[20] Dai Y Z, Li J F, Yang J X. Spatiotemporal responses of habitat quality to urban sprawl in the Changsha metropolitan area[J]. Progress in Geography, 2018, 37(10):1340-1351.
doi: 10.18306/dlkxjz.2018.10.004
[21] 吴楠, 陈红枫, 冯朝阳, 等. 基于土地覆被变化的安徽省生境质量时空演变特征[J]. 长江流域资源与环境, 2020, 29(5):1119-1127.
[21] Wu N, Chen H F, Feng C Y, et al. Spatio-temporal evolution characteristics of habitat quality based on land cover change in Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2020, 29(5):1119-1127.
[22] Tallis H, Ricketts T, Guerry A, et al. InVEST 3.9.0 user’s guide:Integrated valuation of environmental services and tradeoffs[EB/OL]. 2019.
[23] 崔馨月, 方雷, 王祥荣, 等. 基于DPSIR模型的长三角城市群生态安全评价研究[J]. 生态学报, 2021, 41(1):302-319.
[23] Cui X Y, Fang L, Wang X R, et al. Urban eco-security assessment in the urban agglomerations based on DPSIR model:A case study of Yangtze River Delta,China[J]. Acta Ecologica Sinica, 2021, 41(1):302-319.
[24] 陆丽珍, 詹远增, 叶艳妹, 等. 基于土地利用空间格局的区域生态系统健康评价——以舟山岛为例[J]. 生态学报, 2010, 30(1):245-252.
[24] Lu L Z, Zhan Y Z, Ye Y M, et al. Regional ecosystem health assessment based on land use pattern:A case of study of Zhoushan Island[J]. Acta Ecologica Sinica, 2010, 30(1):245-252.
doi: 10.1016/j.chnaes.2010.08.003 url: https://linkinghub.elsevier.com/retrieve/pii/S1872203210000491
[25] 彭建, 王仰麟, 吴健生, 等. 区域生态系统健康评价——研究方法与进展[J]. 生态学报, 2007, 27(11):4877-4885.
[25] Peng J, Wang Y L, Wu J S, et al. Evaluation for regional ecosystem health:Methodology and research progress[J]. Acta Ecologica Sinica, 2007, 27(11):4877-4885.
doi: 10.1016/S1872-2032(08)60009-8 url: https://linkinghub.elsevier.com/retrieve/pii/S1872203208600098
[26] 李佳豪, 罗洁, 徐勇, 等. 基于VOR模型的广西2014与2019年生态健康时空变化特征研究[J]. 无线电工程, 2021, 51(10):1134-1141.
[26] Li J H, Luo J, Xu Y, et al. Research on the spatiotemporal characteristics of ecological health in Guangxi in 2014 and 2019 based on VOR model[J]. Radio Engineering, 2021, 51(10):1134-1141.
[1] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[2] ZHANG Zhenqi, CAI Huiwen, ZHANG Pingping, WANG Zelin, LI Tingting. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
[3] LI Bo, LIN Wenpeng, LI Lubing. SDG15-oriented analysis on the spatiotemporal dynamics of ecosystem services in Qianjiangyuan National Park[J]. Remote Sensing for Natural Resources, 2022, 34(4): 243-253.
[4] LI Jingzhi, WANG Miao, FENG Wenjing, LI Bin. The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China[J]. Remote Sensing for Natural Resources, 2022, 34(3): 207-217.
[5] YE Qinyu, YANG Shiqi, ZHANG Qiang, WANG Shu, HE Zeneng, ZHENG Yinghui. Analysis on water conservation function using remote sensing method in the Three Gorges Reservoir area (Chongqing section)[J]. Remote Sensing for Natural Resources, 2022, 34(2): 184-193.
[6] LI Xia, LI Jingzhi. Response mechanism of ecosystem service value to urban and rural construction land expansion in the three outlets of the southern Jingjiang River[J]. Remote Sensing for Natural Resources, 2022, 34(2): 278-288.
[7] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[8] Zhouyang XU. Spatial-temporal dynamics of ecosystem health in Sichuan Province based on PSR model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 251-258.
[9] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[10] Riping ZHOU. Assessing the soil erosion control service in the typical area of Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(2): 131-139.
[11] KANG Hongxia, NA Xiaodong, ZANG Shuying. Research on the evaluation of wetland ecosystem services of Songnen Plain during 1980—2010[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 193-200.
[12] XU Xu, REN Feipeng, HAN Nianlong. Remote sensing monitoring of spatio-temporal changes of ecosystem service values in Hebei Province, 2000—2009[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 187-193.
[13] YIN Kai, ZHAO Qianjun, WEN Meiping, HUA Lizhong, LIN Tao, SHI Longyu. Assessment of landscape pattern effect and ecosystem services of island urban forest[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 128-133.
[14] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[15] HAO Hui-mei, HAO Yong-li, TIAN Dang-sheng. Dynamic Evaluating Regional Land-cover Changes and Associated Ecosystem's Service Value Based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech