Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 231-242     DOI: 10.6046/zrzyyg.2022042
A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region
ZHANG Zhenqi1(), CAI Huiwen1,2(), ZHANG Pingping1, WANG Zelin1, LI Tingting2
1. College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
2. NationalEngineering Research Center of Marine Aquaculture, Zhoushan 316022, China
Download: PDF(10112 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Net ecosystem productivity (NEP) represents the carbon sequestration capacity of a regional ecosystem. Based on the Google Earth Engine (GEE) platform, this study analyzed the temporal and spatial variations in the NEP of the Three-River Headwaters Region (TRHR) from 2001 to 2020 based on the Moderate Resolution Imaging Spectrometer (MODIS) and meteorological data and revealed their relationships with climate factors. The results are as follows: ① The TRHR had an important carbon sink function, with carbon sink areas accounting for 99.89%; The carbon source areas in the TRHR were primarily distributed in the northwest, accounting for only 0.11%. The NEP of the TRHR decreased gradually from the southeast to the northwest and differed significantly among different ecological areas; ② The NEP of the TRHR showed an upward trend overall in the past 20 years, with an annual increasing rate of 1.13 gC/(m2·a), indicating huge carbon sequestration potential; ③ The area of zones whose NEP showed an upward trend accounted for 95.05% of the total area. Ecological engineering construction significantly improved the NEP of vegetation. As a result, the carbon sink function gradually increased and was highly stable; ④ The TRHR had an annual average NEP of 120.93 gC/(m2·a), and the NEP was positively correlated with the annual precipitation but negatively correlated with average annual temperature and annual solar radiation. The warm, humid climate and the ecological engineering construction contributed to the carbon sink function of vegetation in the TRHR. This is of great significance for improving the carbon sink value of the terrestrial ecosystem and achieving the peak carbon dioxide emissions and carbon neutrality of China.

Keywords net ecosystem productivity (NEP)      Three-River Headwaters Region      carbon source/sink      temporal-spatial variation      climate change     
ZTFLH:  TP79  
Issue Date: 20 March 2023
E-mail this article
E-mail Alert
Articles by authors
Zhenqi ZHANG
Huiwen CAI
Pingping ZHANG
Zelin WANG
Tingting LI
Cite this article:   
Zhenqi ZHANG,Huiwen CAI,Pingping ZHANG, et al. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
URL:     OR
Fig.1  Ecological regions and elevation in the Three-River Headwaters region
数据 数据集 波段 分辨率 单位 提供者
NPP MOD17A3HGF V6 Npp 500 m kg·C/m2 NASA LP DAAC at the USGS EROS Center
气温 ERA5-Land temperature_2m 0.1° Climate Data Store
降水 CHIRPS Precipitation 0.05° mm UCSB/CHG
太阳辐射 ERA5-Land surface_net_solar_radiation 0.1° J/m2 Climate Data Store
Tab.1  Data list based on GEE platform
Fig.2  Interannual variation of annual average NEP in the Three-River Headwaters region from 2001 to 2020
Fig.3  Carbon source/sink area variation in the Three-River Headwaters region
Fig.4  The interannual variation trend of annual average NEP in different ecological regions
Fig.5  Spatial distribution of annual average NEP in the Three-River Headwaters region from 2001 to 2020
slope趋势分级 变化等级 面积/km2 比例/%
[-1,-0.477) 明显变差 6 335.17 2.09
[-0.477,0) 轻微变差 8 635.27 2.85
[0,0.484) 基本稳定 42 243.85 13.96
[0.484,0.813) 轻微好转 44 727.26 14.79
[0.813,1] 明显好转 200 558.45 66.30
Tab.2  Statistical analysis of NEP variation in the Three-River Headwaters region from 2001 to 2020
Fig.6  Spatial distribution of NEP variation trend in the Three-River Headwaters region from 2001 to 2020
CV变异系数分级 稳定性等级 面积/km2 比例/%
[-0.078,0.138) 111 203.09 36.76
[0.138,0.219) 较高 114 947.61 38.00
[0.219,0.339) 中等 56 001.25 18.51
[0.339,0.559) 较低 13 818.14 4.57
[0.559,0.75) 6 529.90 2.16
Tab.3  NEP stability analysis in the Three-River Headwaters Region from 2001 to 2020
Fig.7  Spatial distribution of NEP stability in the Three-River Headwaters region from 2001 to 2020
Fig.8  Spatial distribution of partial correlation coefficients between NEP and precipitation, temperature, and solar radiation in the Three-River Headwaters Region from 2001—2020
Fig.9  Percentage of the areas affected by precipitation, temperature, and solar radiation in the Three-River Headwaters Region from 2001—2020
[1] Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake[J]. Nature Communications, 2016, 7:13428.
doi: 10.1038/ncomms13428
[2] 唐希颖, 武红, 董金玮, 等. 沙化和退化状态对甘南草地生态系统固碳的影响[J]. 生态学杂志, 2022, 41(2):278-286.
[2] Tang X Y, Wu H, Dong J W, et al. Effects of desertification and degradation on carbon sequestration of grassland ecosystem in Gannan[J]. Chinese Journal of Ecology, 2022, 41(2):278-286.
[3] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574.
[3] Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae), 2022, 52(4):534-574.
[4] Woodwell G M, Whitaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199:141-146.
pmid: 17812932
[5] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15):5306-5317.
[5] Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15):5306-5317.
[6] 陈雪娇, 周伟, 杨晗. 2001—2017年三江源区典型草地群落碳源/汇模拟及动态变化分析[J]. 干旱区地理, 2020, 43(6):1583-1592.
[6] Chen X J, Zhou W, Y H. Simulation and dynamic change of carbon source/sink in the typical grassland communities in the Three River Source area from 2001 to 2017[J]. Arid Land Geography, 2020, 43(6):1583-1592.
[7] 王苗苗. 三江源区高寒草甸草产量遥感监测及植物碳汇动态研究[D]. 兰州: 兰州大学, 2011.
[7] Wang M M. Study of the alpine meadow yield monitoring and the dynamic of vegetation carbon sequestration in the source region of Yangtze,Yellow and Lancang Rivers[D]. Lanzhou: Lanzhou University, 2011.
[8] 郑飞鸽, 易桂花, 张廷斌, 等. 三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学, 2020, 40(1):401-413.
[8] Zheng F G, Yi G H, Zhang T B, et al. Study on spatio-temporal dynamics of vegetation carbon use efficiency and its response to climate factors in Three-River Headwaters region[J]. China Environmental Science, 2020, 40(1):401-413.
[9] 苏淑兰. 三江源草地生态系统碳储量及其影响因素[D]. 兰州: 兰州大学, 2015.
[9] Su S L. Carbon storage and its influencing factors of the grassland in Three River Sources Region[D]. Lanzhou: Lanzhou University, 2015.
[10] 张继平, 刘春兰, 郝海广, 等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 2015, 24(1):8-13.
doi: 10.16258/j.cnki.1674-5906.2015.01.002
[10] Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences, 2015, 24(1):8-13.
[11] 路秋玲, 李愿会. 三江源自然保护区森林植被层碳储量及碳密度研究[J]. 林业资源管理, 2018(4):146-153.
[11] Lu Q L, Li Y H. Study on carbon storage and carbon density of forest vegetation in Sanjiangyuan Nature Reserve[J]. Forest Resources Management, 2018(4):146-153.
[12] 李宗洮. 青海三江源地区农业碳排放影响因素及减排对策研究[D]. 西宁: 青海大学, 2020.
[12] Li Z T. Study on factors affecting agricultural carbon emission and countermeasures for emission reduction in Sanjiangyuan region of Qinghai[D]. Xining: Qinghai University, 2020.
[13] 任小丽, 何洪林, 张黎, 等. 2001—2010年三江源区草地净生态系统生产力估算[J]. 环境科学研究, 2017, 30(1):51-58.
[13] Ren X L, He H L, Zhang L, et al. Net ecosystem production of alpine grasslands in the Three-River Headwaters region during 2001—2010[J]. Research of Environmental Sciences, 2017, 30(1):51-58.
[14] Long T, Zhang Z, He G, et al. 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine[J]. Remote Sensing, 2019, 11(5): 489.
doi: 10.3390/rs11050489 url:
[15] 陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine平台的三江源地区生态环境质量动态监测与分析[J]. 地球信息科学学报, 2019, 21(9):1382-1391.
doi: 10.12082/dqxxkx.2019.190095
[15] Chen W, Huang H P, Tian Y C, et al. Monitoring and assessment of the eco-environment quality in the Sanjiangyuan region based on Google Earth Engine[J]. Journal of Geo-Information Science, 2019, 21(9):1382-1391.
[16] 傅伯杰, 刘国华, 陈利顶, 等. 中国生态区划方案[J]. 生态学报, 2001(1):1-6.
[16] Fu B J, Liu G H, Chen L D, et al. Scheme of ecological regionalization in China[J]. Acta Ecologica Sinica, 2001(1):1-6.
[17] 郑修诚, 周斌, 雷惠, 等. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1):18-26.doi: 10.6046/zrzyyg.2022021.
doi: 10.6046/zrzyyg.2022021
[17] Zheng X C, Zhou B, Li H, et al. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1):18-26.doi: 10.6046/zrzyyg.2022021.
doi: 10.6046/zrzyyg.2022021
[18] 戴尔阜, 黄宇, 吴卓, 等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系[J]. 地理学报, 2016, 71(1):21-34.
doi: 10.11821/dlxb201601002
[18] Dai E F, Huang Y, Wu Z, et al. Spatial-temporal features of carbon source-sink and its relationship with climate factors in Inner Mongolia grassland ecosystem[J]. Acta Geographica Sinica, 2016, 71(1):21-34.
doi: 10.11821/dlxb201601002
[19] 巩杰, 张影, 钱彩云. 甘肃白龙江流域净生态系统生产力时空变化[J]. 生态学报, 2017, 37(15):5121-5128.
[19] Gong J, Zhang Y, Qian C Y. Temporal and spatial distribution of net ecosystem productivity in the Bailongjiang Watershed of Gansu Province[J]. Acta Ecologica Sinica, 2017, 37(15):5121-5128.
[20] 周夏飞, 於方, 曹国志, 等. 2001—2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系[J]. 水土保持研究, 2019, 26(1):76-81.
[20] Zhou X F, Yu F, Cao G Z, et al. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Tibet Plateau grassland ecosystem during 2001—2015[J]. Research of Soil and Water Conservation, 2019, 26(1):76-81.
[21] Pei Z Y, Ouyang H, Zhou C P, et al. Carbon balance in an alpine steppe in the Qinghai-Tibet Plateau[J]. Journal of Integrative Plant Biology, 2009, 51(5):521-526.
doi: 10.1111/jipb.2009.51.issue-5 url:
[22] 潘竟虎, 文岩. 中国西北干旱区植被碳汇估算及其时空格局[J]. 生态学报, 2015, 35(23):7718-7728.
[22] Pan J H, Wen Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of northwest China[J]. Acta Ecologica Sinica, 2015, 35(23):7718-7728.
[23] 张璐, 王静, 施润和. 2000—2010年东北三省碳源汇时空动态遥感研究[J]. 华东师范大学学报(自然科学版), 2015(4):164-173.
[23] Zhang L, Wang J, Shi R H. Temporal-spatial variations of carbon sink / source in Northeast China from 2000 to 2010[J]. Journal of East China Normal University(Natural Science), 2015(4):164-173.
[24] 童晓伟, 王克林, 岳跃民, 等. 桂西北喀斯特区域植被变化趋势及其对气候和地形的响应[J]. 生态学报, 2014, 34(12):3425-3434.
[24] Tong X W, Wang K L, Yue Y M, et al. Trends in vegetation and their responses to climate and topography in northwest Guangxi[J]. Acta Ecologica Sinica, 2014, 34(12):3425-3434.
[25] 刘逸滨, 刘宝元, 成城, 等. 退耕还林草20年来榆林市植被覆盖度时空变化及影响因素分析[J]. 水土保持学报, 2022, 36(2):197-208,218.
[25] Liu Y B, Liu B Y, Cheng C, et al. Spatio-temporal changes and influencing factors of vegetation coverage in Yulin city during the past 20 years since the implementation of the “Grain for Green” Program[J]. Journal of Soil and Water Conservation, 2022, 36(2):197-208,218.
[26] 冯娴慧, 曾芝琳, 张德顺. 基于MODIS NDVI数据的粤港澳大湾区植被覆盖时空演变[J]. 中国城市林业, 2022, 20(1):1-6,28.
[26] Feng X H, Zeng Z L, Zhang D S. Temporal-spatial evolution of vegetation coverage in Guangdong-HongKong-Macao Greater Bay Area based on MODIS NDVI data[J]. Journal of Chinese Urban Forestry, 2022, 20(1):1-6,28.
[27] 张亮, 蒋军. 基于MODIS-NDVI的地表植被时空变化特征及其与环境因子的关系[J]. 安徽农业科学, 2022, 50(4):57-63.
[27] Zhang L, Jiang J. Temporal and spatial variation characteristics of surface vegetation and its relationship with environmental factors based on MODIS-NDVI[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4):57-63.
[28] 范微维. 2000—2014年三江源区植被NDVI时空变化特征与气候变化响应分析[D]. 成都: 成都理工大学, 2017.
[28] Fan W W. Analysis of NDVI changes and its climate driving factors in the Three River-Headwater region during 2000—2014[D]. Chengdu: Chengdu University of Technology, 2017.
[29] 张翀, 李强, 李忠峰. 三江源地区人类活动对植被覆盖的影响[J]. 中国人口·资源与环境, 2014, 24(5):139-144.
[29] Zhang C, Li Q, Li Z F. Influence of human activities on variation of vegetation cover in the Three-River Source region[J]. China Population,Resources and Environment, 2014, 24(5):139-144.
[30] 邵全琴, 刘纪远, 黄麟, 等. 2005—2009年三江源自然保护区生态保护和建设工程生态成效综合评估[J]. 地理研究, 2013, 32(9):1645-1656.
doi: 10.11821/dlyj201309007
[30] Shao Q Q, Liu J Y, H L, et al. Integrated assessment on the effectiveness of ecological conservation in Sanjiangyuan National Nature Reserve[J]. Geographical Research, 2013, 32(9):1645-1656.
doi: 10.11821/dlyj201309007
[31] 李璠, 徐维新. 2000—2015年青海省不同功能区NDVI时空变化分析[J]. 草地学报, 2017, 25(4):701-710.
doi: 10.11733/j.issn.1007-0435.2017.04.003
[31] Li F, Xu W X. Spatial and temporal variation of NDVl in different functional areas of Qinghai from 2000 to 2015[J]. Acta Agrestia Sinica, 2017, 25(4):701-710.
[32] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19):5495-5504.
[32] Li H X, Liu G H, Fu B J. Response of vegetation to climate change and human activity based on NDVl in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2011, 31(19):5495-5504.
[33] 刘宪锋, 任志远, 林志慧, 等. 2000-2011年三江源区植被覆盖时空变化特征[J]. 地理学报, 2013, 68(7):897-908.
[33] Liu X F, Ren Z Y, Lin Z H, et al. The spatial-temporal changes of vegetation coverage in the Three-River Headwater region in recent 12 years[J]. Acta Geographica Sinica, 2013, 68(7):897-908.
[34] Shi P J, Sun S, Wang M, et al. Climate change regionalization in China (1961—2010)[J]. Science China Earth Sciences, 2014, 57(11): 2676-2689.
doi: 10.1007/s11430-014-4889-1 url:
[35] Bao G, Bao Y H, Sanjjava A, et al. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale[J]. International Journal of Climatology, 2015, 35(14): 4293-4306.
doi: 10.1002/joc.4286 url:
[36] Sun J, Zhou T C, Liu M, et al. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2020, 29(1): 50-64.
doi: 10.1111/geb.v29.1 url:
[37] Zhang X L, Tan Y L, Li A, et al. Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe[J]. Scientific Reports, 2015, 5:15549.
doi: 10.1038/srep15549
[38] Zhang X L, Tan Y L, Zhang B W, et al. The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe[J]. Ecosphere, 2017, 8(1):e01655.
doi: 10.1002/ecs2.1655 url:
[39] 张晓琳, 翟鹏辉, 黄建辉. 降水和氮沉降对草地生态系统碳循环影响研究进展[J]. 草地学报, 2018, 26(2):284-288.
doi: 10.11733/j.issn.1007-0435.2018.02.003
[39] Zhang X L, Zhai P H, Huang J H. Advances in the influences of precipitation and nitrogen deposition change on the carbon cycle of grassland ecosystem[J]. Acta Agrestia Sinica, 2018, 26(2):284-288.
[40] 陈晨, 王义民, 黎云云, 等. 黄河流域1982—2015年不同气候区植被时空变化特征及其影响因素[J]. 长江科学院院报, 2022, 39(2):56-62,81.
[40] Chen C, Wang Y M, Li Y Y, et al. Vegetation changes and influencing factors in different climatic regions of Yellow River basin from 1982 to 2015[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(2):56-62,81.
[41] 贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应[J]. 生态学报, 2019, 39(14):5058-5069.
[41] Jia J H, Liu H Y, Lin Z S. Multi-time scale changes of vegetation NPP in six provinces of northwest China and their responses to climate change[J]. Acta Ecologica Sinica, 2019, 39(14):5058-5069.
[42] 商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1):68-76.
[42] Shang S S, Lian L S, Ma T, et al. Spatiotemporal variation of temperature and precipitation in northwest China in recent 54 years[J]. Arid Zone Research, 2018, 35(1):68-76.
[1] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[2] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[3] WEI Haohan, XU Renjie, YANG Qiang, ZHOU Quanping. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
[4] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[5] PAN Meng, CAO Yungang. Present status and perspectives of remote sensing survey of glacial lakes in High Asia[J]. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
[6] Hongxia LUO, Shengpei DAI, Maofen LI, Yuping LI, Qian ZHENG, Yingying HU. Relative roles of climate changes and human activities in vegetation variables in Hainan Island[J]. Remote Sensing for Land & Resources, 2020, 32(1): 154-161.
[7] Qinglin MENG, Mingyu LI, Chunying REN, Zongming WANG, Yanlin TIAN. Dynamic assessment of habitat quality in eastern Jilin Province based on HSI model[J]. Remote Sensing for Land & Resources, 2019, 31(3): 140-147.
[8] Yuting ZHANG, Zhenfei ZHANG, Zhi ZHANG. Remote sensing study of vegetation coverage during the period 1992—2014 in Dananhu desert area, Xinjiang[J]. Remote Sensing for Land & Resources, 2018, 30(1): 187-195.
[9] YAN Qiang, LIAO Jingjuan, SHEN Guozhuang. Remote sensing analysis and simulation of change of Ulan Ul Lake in the past 40 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 152-157.
[10] HUANG Wei-dong, LIAO Jing-juan, SHEN Guo-zhuang. Lake Change in Past 40 Years in the Southern Nagqu District of Tibet and Analysis of Its Driving Forces[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 122-128.
[11] LU Yun-Ge, LIU Xiao, ZHANG Zhen-De. An Analysis of Characteristics and Driving Forces of Land Desertification in Sanjiangyuan Region[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 72-76.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech