Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 207-217     DOI: 10.6046/zrzyyg.2021323
|
The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China
LI Jingzhi1,2(), WANG Miao1(), FENG Wenjing1, LI Bin1
1. School of Architecture, Changsha University of Science and Technology, Changsha 410076, China
2. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
Download: PDF(5466 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The evaluation of ecosystem service value (ESV) is an important basis for formulating policies regarding ecological protection, ecological compensation, and the accounting for natural resource assets. An in-depth study of the characteristics and driving factors of the spatiotemporal changes in the ESV in Xiangxi Tujia and Miao Autonomous Prefecture, Hunan Province, China is greatly significant for ecological control and protection. This study analyzed the changes in land use based on seven phases of 1990—2018 land use data of Xiangxi and evaluated the ESV in Xiangxi using the equivalence factor method. Moreover, it analyzed the spatiotemporal characteristics of the ESV by combining a spatial statistical model and further explored the driving factors of the ESV. The results are as follows. The main land type in Xiangxi is forest land. In the past 28 years, the area of forest land and grassland decreased due to occupation by construction land, the area of construction land, wetland, and unused land increased, and the water area roughly remained unchanged. Overall, land use in Xiangxi had a moderate or low degree of activity. The total ESV successively increased, decreased, increased, and decreased, forming an M-shaped trend. Moreover, it declined overall. Spatially, the total ESV was higher in the southeast than in the northwest. The spatial self correlation analysis indicated that the ESV in the study area showed positive spatial aggregation, and the ecological spatial pattern in Xiangxi had not changed significantly over the past 28 years. The driving factors leading to the spatiotemporal differences in the ESV main included urbanization rate, population density, the gross output by forestry, and area of forest land. This study will provide a theoretical reference for the rational utilization of land resources and ecological protection in Xiangxi.

Keywords ecosystem service value      spatiotemporal characteristics      spatial self correlation      driving factor      Xiangxi Tujia and Miao Autonomous Prefecture     
ZTFLH:  TP79  
Corresponding Authors: WANG Miao     E-mail: lijingzhi2210862@163.com;Wang_miao97@163.com
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jingzhi LI
Miao WANG
Wenjing FENG
Bin LI
Cite this article:   
Jingzhi LI,Miao WANG,Wenjing FENG, et al. The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China[J]. Remote Sensing for Natural Resources, 2022, 34(3): 207-217.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021323     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/207
Fig.1  Location of the study area
生态系统分类 供给服务 调节服务 支持服务 文化服务
一级
分类
二级
分类
食物
生产
原料
生产
水资源
供给
气体
调节
气候
调节
净化
环境
水文
调节
土壤
保持
维持养
分循环
生物
多样性
美学
景观
农田 旱地 1 155.23 543.64 27.18 910.59 489.27 135.91 366.95 1 399.86 163.09 176.68 81.55
水田 1 848.36 122.32 -3 574.41 1 508.59 774.68 231.05 3 696.72 13.59 258.23 285.41 122.32
林地 阔叶 394.14 897.00 462.09 2 949.23 8 834.09 2 623.04 6 442.09 3 601.59 271.82 3 275.41 1 440.64
针阔混交 421.32 964.95 502.86 3 193.86 9 554.40 2 704.59 4 770.41 3 887.00 299.00 3 533.63 1 549.36
针叶 299.00 706.73 366.95 2 310.45 6 890.59 2 025.04 4 539.36 2 799.73 217.45 2 555.09 1 114.45
灌木 258.23 584.41 299.00 1 916.32 5 748.95 1 739.64 4 552.95 2 337.63 176.68 2 133.77 937.77
草地 灌草丛 516.45 761.09 421.32 2 677.41 7 080.86 2 337.63 5 191.72 3 261.82 244.64 2 962.82 1 304.73
草甸 299.00 448.50 244.64 1 549.36 4 104.45 1 359.09 3 003.59 1 889.14 149.50 1 726.04 761.09
草原 135.91 190.27 108.73 693.14 1 821.18 598.00 1 331.91 842.64 67.95 761.09 339.77
湿地 沼泽地 285.41 339.77 1 766.82 1 291.14 2 446.36 2 446.36 16 472.17 1 630.91 122.32 5 354.81 3 221.04
滩地 407.73 339.77 1 753.23 1 291.14 2 446.36 2 446.36 16 458.58 1 508.59 122.32 5 341.22 3 207.45
未利
用地
裸土地 13.59 40.77 27.18 149.50 135.91 421.32 285.41 176.68 13.59 163.09 67.95
裸岩石质地 0.00 0.00 0.00 27.18 0.00 135.91 40.77 27.18 0.00 27.18 13.59
水域 河渠 543.64 163.09 11 361.99 978.54 2 881.27 6 211.04 118 920.38 557.23 54.36 2 786.13 2 147.36
水库坑塘 543.64 149.50 2840.50 312.59 964.95 1 549.36 29 723.30 706.73 40.77 693.14 543.64
建设
用地
城镇用地 13.59 13.59 0.00 380.55 951.36 0.00 27.18 543.64 0.00 0.00 0.00
农村居民点 13.59 13.59 0.00 380.55 951.36 0.00 27.18 543.64 0.00 0.00 0.00
其他建设用地 13.59 13.59 0.00 380.55 951.36 0.00 27.18 543.64 0.00 0.00 0.00
Tab.1  
驱动因子 变量
人口指标 X1为总人口,人; X2为城镇人口,人; X3为农村人口,人; X4为少数民族人口,人; X5为人口自然增长率,%; X6为人口密度,人/km2; X7为城镇化率,%
经济指标 X8为GDP总量,亿元; X9为人均GDP,元; X10为第一产业总产值,亿元; X11为第二产业总产值,亿元; X12为第三产业总产值,亿元; X13为农村人均纯收入,元; X14为农业总产值,万元; X15为林业总产值,万元; X16为牧业总产值,万元
农业指标 X17为耕地面积,hm2; X18为林地面积,hm2; X19为草地面积,hm2; X20为农作物播种面积,hm2; X21为粮食作物产量,t; X22为粮食作物播种面积,hm2
旅游指标 X23为旅游总人数,万人; X24为旅游年收入,万元
Tab.2  Index system of ecosystem service value change driving force
Fig.2  Land use classification in Xiangxi from 1990 to 2018
土地利用类型 1990—1995年 1995—2000年 2000—2005年 2005—2010年 2010—2013年 2013—2018年 1990—2018年
耕地 -0.18 0.21 -0.07 -0.04 -0.39 -0.18 -0.09
林地 0.05 -0.06 0.01 -0.01 -0.05 -0.01 -0.01
草地 0.19 -0.26 -0.01 -0.02 -0.13 -0.05 -0.04
水域 -2.29 2.00 0.82 -0.49 -1.65 0.66 -0.10
建设用地 0.17 1.01 1.39 2.37 21.24 5.90 6.03
湿地 -6.11 16.48 -6.25 18.41 -3.36 0.45 1.92
未利用地 0.00 1.53 0.00 0.00 47.99 -1.91 4.91
综合土地利用动态度 0.06 0.06 0.01 0.01 0.26 0.22 0.07
Tab.3  Dynamic degree of land use in Xiangxi from 1990 to 2018(%)
土地利
用类型
ESV/亿元 1990—2018年ESV
变化量/亿元
变化
率/%
1990年 1995年 2000年 2005年 2010年 2013年 2018年
耕地 30.098 9 33.255 3 28.461 6 30.520 0 28.542 9 25.109 6 23.175 1 -6.923 8 -23.00
林地 560.697 0 626.099 3 529.272 4 569.876 2 533.688 8 473.399 0 440.539 8 -120.157 2 -21.43
草地 53.139 8 59.735 7 50.002 0 53.788 3 50.336 5 44.524 5 41.333 0 -11.806 8 -22.22
湿地 0.265 2 0.205 5 0.317 3 0.234 7 0.422 3 0.338 1 0.322 0 0.056 8 21.42
未利用地 0.000 2 0.000 3 0.000 2 0.0003 0.000 2 0.002 0 0.001 6 0.001 4 700.00
水域 23.849 1 23.679 2 22.102 6 24.835 0 22.803 7 20.665 8 19.794 6 -4.054 5 -17.00
建设用地 0.275 8 0.310 3 0.276 0 0.317 7 0.333 0 0.485 3 0.585 4 0.309 6 112.24
总计 668.326 0 743.285 6 630.432 1 679.572 2 636.127 4 564.524 3 525.751 5 -142.574 5 -21.33
Tab.4  Changes of ecosystem service value in Xiangxi from 1990 to 2018
生态系统服务功能 ESV/亿元 1990—2018年ESV
变化量/亿元
增长
率/%
一级类型 二级类型 1990年 1995年 2000年 2005年 2010年 2013年 2018年
供给服务 食物生产 16.80 18.68 15.86 17.05 15.95 14.10 13.07 -3.73 -22.21
原料生产 19.82 22.10 18.71 20.13 18.85 16.70 15.52 -4.29 -21.67
水资源供给 0.76 0.60 0.69 0.85 0.79 0.74 0.79 0.03 4.05
调节服务 气体调节 66.46 74.17 62.72 67.51 63.22 56.06 52.14 -14.31 -21.54
气候调节 179.91 200.89 169.78 182.81 171.21 151.88 141.36 -38.54 -21.42
净化环境 54.21 60.43 51.15 55.10 51.59 45.76 42.59 -11.62 -21.43
水文调节 149.99 165.16 141.27 152.84 142.84 127.10 118.65 -31.34 -20.90
支持服务 土壤保持 76.26 85.08 71.98 77.48 72.57 64.34 59.88 -16.38 -21.48
维持养分循环 6.73 7.50 6.35 6.83 6.40 5.66 5.26 -1.46 -21.76
生物多样性 67.60 75.44 63.79 68.68 64.34 57.04 53.07 -14.53 -21.49
文化服务 美学景观 29.81 33.24 28.13 30.29 28.37 25.16 23.41 -6.39 -21.45
总计 668.33 743.29 630.43 679.57 636.13 564.52 525.75 -142.57 -21.33
Tab.5  Ecosystem service value of each kind of the service function in Xiangxi from 1990 to 2018
Fig.3  Distribution of the ecosystem service value in Xiangxi from 1990 to 2018
土地类型 1990年 1995年 2000年 2005年 2010年 2013年 2018年
耕地VC±50% 0.045 0 0.044 7 0.045 1 0.044 9 0.044 9 0.044 5 0.044 1
林地VC±50% 0.839 0 0.842 3 0.839 5 0.838 6 0.839 0 0.838 6 0.837 9
草地VC±50% 0.079 5 0.080 4 0.079 3 0.079 2 0.079 1 0.078 9 0.078 6
湿地VC±50% 0.000 4 0.000 3 0.000 5 0.000 3 0.000 7 0.000 6 0.000 6
未利用地VC±50% 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
水域VC±50% 0.035 7 0.031 9 0.035 1 0.036 5 0.035 8 0.036 6 0.037 7
建设用地VC±50% 0.000 4 0.000 4 0.000 4 0.000 5 0.000 5 0.000 9 0.001 1
Tab.6  Sensitivity coefficient of Xiangxi from 1990 to 2018
指标 1990年 1995年 2000年 2005年 2010年 2013年 2018年
Moran’s I 0.428 1 0.428 3 0.428 1 0.428 7 0.428 0 0.426 1 0.423 2
统计量 21.649 6 22.009 8 21.818 9 22.160 5 22.167 7 21.591 4 20.700 9
p 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Tab.7  Global Moran’s I of ecosystem service value in Xiangxi
Fig.4  LISA cluster graph of ecosystem service value in Xiangxi from 1990 to 2018
生态系统服务
价值类型/亿元
回归模型 调整后R2
生态系统服务总价值 y = - 4.361 X 7 + 754.142 0.609
y = - 12.148 X 7 + 0.006 X 15 +     761.993 y = - 6.133 X 7 + 0.004 X 15 +     0.025 X 18 - 2.661 × 10 4 0.836
0.984
供给服务价值 y 1 = - 0.200 X 6 + 70.145 0.604
y 1 = - 0.242 X 7 + 42.088 0.610
调节服务价值 y 2 = - 2.926 X 7 + 508.02 0.608
y 2 = - 8.171 X 7 + 0.004 X 15 +     513.340 0.837
支持服务价值 y 3 = - 0.996 X 7 + 170.300 0.610
文化服务价值 y 4 = - 0.197 X 7 + 33.695 0.609
Tab.8  Ecosystem service value regression models of each service in the study area
[1] 董成森, 董明辉. 关于湘西自治州生态环境建设的思考[J]. 农业现代化研究, 2002(2):152-154.
[1] Dong C S, Dong M H. On ecological environment construction in Xiangxi Autonomous Prefecture of Hunan Province[J]. Research of Agricultural Modernization, 2002(2):152-154.
[2] 汪久文. 尊重并敬畏大自然的基本规律是人类赖以生存的基本法则[J]. 干旱区资源与环境, 2018, 32(5):1-4.
[2] Wang J W. Respect and awe of nature is the fundamental law of human being existence[J]. Journal of Arid Land Resources and Environment, 2018, 32(5):1-4.
[3] Holdren J P, Ehrlich P R. Human population and the global environment:Population growth,rising per capita material consumption,and disruptive technologies have made civilization a global eco-logical force[J]. American Scientist, 1974, 62(3): 282-292.
pmid: 4832978
[4] Costanza R, d’Arge R, De Groot R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253-260.
doi: 10.1038/387253a0 url: https://doi.org/10.1038/387253a0
[5] Assessment M E. Ecosystems and human well-being[M]. United States of America: Island Press, 2005.
[6] 杜加强, 王金生, 滕彦国, 等. 重庆市生态系统服务价值动态评估[J]. 生态学杂志, 2008, 27(7):1187-1192.
[6] Du J Q, Wang J S, Teng Y G, et al. Dynamic evaluation on ecosystem service value of Chongqing City[J]. Chinese Journal of Ecology, 2008, 27(7):1187-1192.
[7] 欧阳志云, 王如松. 生态系统服务功能、生态价值与可持续发展[J]. 世界科技研究与发展, 2000(5):45-50.
[7] Ouyang Z Y, Wang R S. Ecosystem services and their economic valuation[J]. World Sci-Tech Research and Development, 2000(5):45-50.
[8] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究[J]. 生态学报, 1999, 19(5):19-25.
[8] Ouyang Z Y, Wang X K, Miao H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values[J]. Acta Ecologica Sinica, 1999, 19(5):19-25.
[9] 谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003(2):189-196.
[9] Xie G D, Lu C X, Leng Y F, et al. Ecological assets valuation of the Tibetan Plateau[J]. Journal of Natural Resources, 2003(2):189-196.
[10] 谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008(5):911-919.
[10] Xie G D, Zhen L, Lu C X, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008(5):911-919.
[11] 谢高地, 张彩霞, 张昌顺, 等. 中国生态系统服务的价值[J]. 资源科学, 2015, 37(9):1740-1746.
[11] Xie G D, Zhang C X, Zhang C S, et al. The value of ecosystem service in China[J]. Resources Science, 2015, 37(9):1740-1746.
[12] 赵同谦, 欧阳志云, 郑华, 等. 中国森林生态系统服务功能及其价值评价[J]. 自然资源学报, 2004(4):480-491.
[12] Zhao T Q, Ouyang Z Y, Zheng H, et al. Forest ecosystem services and their valuation in China[J]. Journal of Natural Resources, 2004(4):480-491.
[13] 赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价[J]. 生态学报, 2004, 24(6):1101-1110.
[13] Zhao T Q, Ouyang Z Y, Jia L Q, et al. Ecosystem services and their valuation of China grassland[J]. Acta Ecologica Sinica, 2004, 24(6):1101-1110.
[14] Daily G C. Introduction:What are ecosystem services[M]// Nature’s Services:Societal Dependence on Natural Ecosystems. Washington: Island Press, 1997:1-10.
[15] 谢高地, 鲁春霞, 成升魁. 全球生态系统服务价值评估研究进展[J]. 资源科学, 2001, 23(6):5-9.
[15] Xie G D, Lu C X, Cheng S K. Progress in evaluating the global ecosystem services[J]. Resources Science, 2001, 23(6):5-9.
[16] 张振明, 刘俊国. 生态系统服务价值研究进展[J]. 环境科学学报, 2011, 31(9):1835-1842.
[16] Zhang Z M, Liu J G. Progress in the valuation of ecosystem service[J]. Acta Scientiae Circumstantiae, 2011, 31(9):1835-1842.
[17] 王女杰, 刘建, 吴大千, 等. 基于生态系统服务价值的区域生态补偿——以山东省为例[J]. 生态学报, 2010, 30(23):6646-6653.
[17] Wang N J, Liu J, Wu D Q, et al. Regional eco-compensation based on ecosystem service assessment:A case study of Shandong Province[J]. Acta Ecologica Sinica, 2010, 30(23):6646-6653.
[18] 高振斌, 王小莉, 苏婧, 等. 基于生态系统服务价值评估的东江流域生态补偿研究[J]. 生态与农村环境学报, 2018, 34(6):563-570.
[18] Gao Z B, Wang X L, Su J, et al. Ecological compensation of Dongjiang River basin based on evaluation of ecosystem service value[J]. Journal of Ecology and Rural Environment, 2018, 34(6):563-570.
[19] 杨俊, 单灵芝, 席建超, 等. 南四湖湿地土地利用格局演变与生态效应[J]. 资源科学, 2014, 36(4):856-864.
[19] Yang J, Shan L Z, Xi J C, et al. Land use pattern changes and ecological effects in Nansihu wetland[J]. Resources Science, 2014, 36(4):856-864.
[20] 佟光臣, 林杰, 陈杭, 等. 1986—2013年南京市土地利用/覆被景观格局时空变化及驱动力因素分析[J]. 水土保持研究, 2017, 24(2):240-245.
[20] Tong G C, Lin J, Chen H, et al. Land use and landscape pattern changes and the driving force factors in Nanjing from 1986 to 2013[J]. Research of Soil and Water Conservation, 2017, 24(2):240-245.
[21] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8):1243-1254.
[21] Xie G D, Zhang C X, Zhang L M, et al. Improvement of ecosystem service value method based on unit area value equivalent factor[J]. Journal of Natural Resource, 2015, 30(8):1243-1254.
[22] 刘倩, 李葛, 张超, 等. 基于系数修正的青龙县生态系统服务价值动态变化研究[J]. 中国生态农业学报(中英文), 2019, 27(6):971-980.
[22] Liu Q, Li G, Zhang C, et al. Study on dynamic changes in ecosystem service values in Qinglong County based on coefficient correction[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 971-980
[23] 杨锁华, 胡守庚, 瞿诗进. 1990—2014年长江中游经济带生态系统服务价值时空变化特征[J]. 水土保持研究, 2018, 25(3):164-169.
[23] Yang S H, Hu S G, Qu S J. Spatiotemporal dynamics of ecosystem service value in Middle Yangtze River economic region from 1990 to 2014[J]. Research of Soil and Water Conservation, 2018, 25(3):164-169.
[24] 朱增云, 阿里木江·卡斯木. 干旱区绿洲城市生态系统服务价值空间自相关格局分析与模拟[J]. 生态与农村环境学报, 2019, 35(12):1531-1540.
[24] Zhu Z Y, Alimujiang K. Analysis and simulation of the spatial autocorrelation pattern in the ecosystem service value of the oasis cities in dry area[J]. Journal of Ecology and rural Environment, 2019, 35(12):1531-1540.
[25] 丁娅楠, 刘海龙, 王炜桥, 等. 基于格网的长治市生态系统服务时空演变及空间相关性分析[J]. 陕西理工大学学报(自然科学版), 2021, 37(4):85-92.
[25] Ding Y N, Liu H L, Wang W Q, et al. Spatial-temporal evolution and spatial correlation analysis of ecosystem services based on grid in Changzhi[J]. Journal of Shaanxi University of Technology(Natural Science Edition), 2021, 37(4):85-92.
[26] 罗盛锋, 闫文德. 广西北部湾沿岸地区生态系统服务价值变化及其驱动力[J]. 生态学报, 2018, 38(9):3248-3259.
[26] Luo S F, Yan W D. Evolution and driving force analysis of ecosystem service values in Guangxi Beibu Gulf coastal areas,China[J]. Acta Ecologica Sinica, 2018, 38(9):3248-3259.
[27] 胡和兵, 刘红玉, 郝敬锋, 等. 城市化流域生态系统服务价值时空分异特征及其对土地利用程度的响应[J]. 生态学报, 2013, 33(8):2565-2576.
[27] Hu H B, Liu H Y, Hao J F, et al. Spatio-temporal variation in the value of ecosystem services and its response to land use intensity in an urbanized watershed[J]. Acta Ecologica Sinica, 2013, 33(8):2565-2576.
doi: 10.5846/stxb201201100048 url: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201201100048
[28] 李哲, 张飞, Kung H T, 等. 1998—2014年艾比湖湿地自然保护区生态系统服务价值及其时空变异[J]. 生态学报, 2017, 37(15):4984-4997.
[28] Li Z, Zhang F, Kung H T, et al. Spatial and temporal ecosystem changes in the Ebinur wetland nature reserve from 1998 to 2014[J]. Acta Ecologica Sinica, 2017, 37(15):4984-4997.
[29] 唐小平, 栾晓峰. 构建以国家公园为主体的自然保护地体系[J]. 林业资源管理, 2017(6):1-8.
[29] Tang X P, Luan X F. Developing a nature protected area system composed mainly of national parks[J]. Forest Resources Management, 2017(6):1-8.
[1] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[2] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[3] LIN Xuemin, LI Weifeng, WANG Hong, MING Dongping, HAN Lijian. Analysis of the groundwater storage variations and their driving factors in the three eastern coastal urban agglomerations of China[J]. Remote Sensing for Natural Resources, 2022, 34(4): 262-271.
[4] ZHU Sijia, FENG Huihui, ZOU Bin, YE Shuchao. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3): 196-206.
[5] LI Yimin, YANG Shuting, WU Bowen, LIANG Yuxi, MENG Yueyue. Spatiotemporal evolution of impervious surface and the driving factors in Chenggong District,Kunming City[J]. Remote Sensing for Natural Resources, 2022, 34(2): 136-143.
[6] LI Xia, LI Jingzhi. Response mechanism of ecosystem service value to urban and rural construction land expansion in the three outlets of the southern Jingjiang River[J]. Remote Sensing for Natural Resources, 2022, 34(2): 278-288.
[7] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[8] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[9] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[10] Yu ZHANG, Xiaoli ZHAO, Lijun ZUO, Zengxiang ZHANG, Jinyong XU. The impact of land use change on ecosystem services value in Loess Plateau[J]. Remote Sensing for Land & Resources, 2019, 31(3): 132-139.
[11] Zhaohua LIU, Chunyan ZHANG. Dynamic monitoring and driving factors analysis of urban expansion in Kaifeng[J]. Remote Sensing for Land & Resources, 2018, 30(4): 193-199.
[12] LV Ning, GAO Yang, DENG Yu-Jiao, XUE Chong-Sheng. A STUDY OF URBAN SPATIAL STRUCTURAL DYNAMIC CHANGES OF YIWU CITY
IN ZHEJIANG PROVINCE BASED ON REMOTE SENSING MONITORING
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 65-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech