Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 151-159     DOI: 10.6046/zrzyyg.2023007
|
Evolutionary process and inundation risk identification of water bodies in the beach area of the Yellow River estuary from 1976 to 2020
LIU Jiafeng1,2(), ZHANG Wenkai1(), DU Xiaomin1, JI Xinyang1, YANG Jinzhong1, FAN Jinghui1, SUN Xiyong1, TONG Jing1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Open Research Fund Program of Key Laboratory of Digital Mapping and Land Information Application, Minisitry of Natural Resources, Wuhan 430079, China
Download: PDF(5662 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The ecological protection and high-quality development of the Yellow River basin has become a national strategy. Hence, conducting dynamic monitoring research on the extent of water bodies in the beach area of the Yellow River estuary to avoid potential inundation risks from the evolution of water bodies holds critical significance. Based on the Landsat remote sensing image dataset for wet seasons in the long term, this study extracted the maximum water body extents in the beach area of the Yellow River estuary at 10 time points from 1976 to 2020 using the decision tree-based multi-index land surface water body extraction method. Moreover, this study calculated the historical inundation frequency of each zone through overlay analysis, further identifying the inundation risks of urban and rural settlements and mining land. The findings reveal an area of 463.7 km2 inundated over five times at 10 time points. Among 631 urban and rural settlements and mining land in 2015, 413, 52, and 20 exhibited low, medium, and high inundation risks, respectively. Overall, it is necessary to specify the relocation requirements, scientifically select relocation sites, and improve the infrastructure targeting construction land like urban and rural settlements in the beach area of the Yellow River estuary.

Keywords Yellow River estuary      Yellow River beach area      remote sensing technology      water body extent      inundation risk     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiafeng LIU
Wenkai ZHANG
Xiaomin DU
Xinyang JI
Jinzhong YANG
Jinghui FAN
Xiyong SUN
Jing TONG
Cite this article:   
Jiafeng LIU,Wenkai ZHANG,Xiaomin DU, et al. Evolutionary process and inundation risk identification of water bodies in the beach area of the Yellow River estuary from 1976 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2): 151-159.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023007     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/151
Fig.1  Basis for delineating the monitoring area of the Yellow River beach area
Fig.2  Monitoring coverage of the Yellow River beach area
年份 卫星型号 传感器 空间分辨率/m 年份 卫星型号 传感器 空间分辨率/m
1976年 Landsat2 MSS02 60 2000年 Landsat5/7 TM/ETM+ 30
1980年 Landsat3 MSS03 60 2005年 Landsat5 TM 30
1985年 Landsat5 TM 30 2010年 Landsat5 TM 30
1990年 Landsat5 TM 30 2015年 Landsat8 OLI 30
1995年 Landsat5 TM 30 2020年 Landsat8 OLI 30
Tab.1  Remote sensing image data information selected for long time series water body extent monitoring in the Yellow River beach area
Fig.3  Remote sensing images of the Yellow River beach area between 1976 to 2020
Fig.4  Interpretation results of land use types in the Yellow River beach area in 2015 and 2020
Fig.5  Technical route for water body extent extraction in the Yellow River beach area
地类 水体 非水体 用户
精度/%
制图
精度/%
水体 9 486 514 94.86 95.17
非水体 481 9 519 95.19 94.88
总体精度/% 95.02
Kappa系数 0.900 5
Tab.2  Confusion matrix for accuracy verification of water body extraction results in the Yellow River beach area
Fig.6  Identification results of water body extents in the Yellow River beach area during the wet seasons from 1976 to 2020
Fig.7  Statistics of the flooded area of the Yellow River beach area during the wet seasons in previous years
淹没次数 淹没概率/% 淹没风险分级
10 100
9 90
8 80 经常淹没
7 70
6 60
5 50
4 40 偶尔被淹没
3 30
2 20
1 10 不经常淹没
0 0
Tab.3  Correspondence table of inundation number, inundation probability and inundation risk classification
Fig.8  Number and risk of inundation of water bodies in the Yellow River beach area from 1976 to 2020
Fig.9  Statistical analysis of the area of inundation numbers in the Yellow River beach area between 1976 and 2020
Fig.10  Spatial distribution of inundation potential and urgency of relocation of urban settlements and industrial and mining sites in the Yellow River beach area
Fig.11  Proportion of the area of settlements in the Yellow River beach area with different degrees of urgency to relocate
Tab.4  Comparison of 2 phases of remote sensing image monitoring of high inundation risk settlements
[1] 赵彦伟, 杨志峰, 姚长青. 黄河健康评价与修复基本框架[J]. 水土保持学报, 2005, 19(5):131-134,173.
[1] Zhao Y W, Yang Z F, Yao C Q. Basic frameworks of health assessment and restoration of Yellow River[J]. Journal of Soil Water Conservation, 2005, 19(5):131-134,173.
[2] 方梦阳, 刘晓煌, 孔凡全, 等. 一种基于GEE平台制作逐年土地覆盖数据的方法——以黄河流域为例[J]. 自然资源遥感, 2022, 34(1):135-141.doi:10.6046/zrzyyg.2021088.
[2] Fang M Y, Liu X H, Kong F Q, et al. A method for creating annual land cover data based on Google Earth Engine:A case study of the Yellow River Basin[J]. Remote Sensing for Natural Resources, 2022, 34(1):135-141.doi:10.6046/zrzyyg.2021088.
[3] 杨雯娜, 周亮, 孙东琪. 基于分区-集成的黄河流域生态脆弱性评价[J]. 自然资源遥感, 2021, 33(3):211-218.doi:10.6046/zrzyyg.2020286.
[3] Yang W N, Zhou L, Sun D Q. Ecological vulnerability assessment of the Yellow River Basin based on partition-integration concept[J]. Remote Sensing for Natural Resources, 2021, 33(3):211-218.doi:10.6046/zrzyyg.2020286.
[4] 王薇, 吕宁江, 王昕, 等. 黄河三角洲水土资源空间匹配格局探析[J]. 水资源与水工程学报, 2014, 25(2):66-70.
[4] Wang W, Lyu N J, Wang X, et al. Study on spatial matching pattern of water and soil resources in Yellow River delta[J]. Journal of Water Resources and Water Engineering, 2014, 25(2):66-70.
[5] 李云龙, 孔祥伦, 韩美, 等. 1986—2016年黄河三角洲地表水体变化及其驱动力分析[J]. 农业工程学报, 2019, 35(16):105-113.
[5] Li Y L, Kong X L, Han M, et al. Analysis of surface water changes and driving force in Yellow River Delta from 1986 to 2016[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16):105-113.
[6] 王集宁, 蒙永辉, 张丽霞. 近42年黄河口海岸线遥感监测与变迁分析[J]. 国土资源遥感, 2016, 28(3):188-193.doi:10.6046/gtzyyg.2016.03.29.
[6] Wang J N, Meng Y H, Zhang L X. Remote sensing monitoring and change analysis of Yellow River Estuary coastline in the past 42 years[J]. Remote Sensing for Land and Resources, 2016, 28(3):188-193.doi:10.6046/gtzyyg.2016.03.29.
[7] Peng D, Xiong L, Guo S, et al. Study of Dongting Lake area variation and its influence on water level using MODIS data/Etude de la variation de la surface du Lac Dongting et de son influence sur le niveau d’eau,grâce à des données MODIS[J]. Hydrological Sciences Journal, 2005, 50(1):31-44.
[8] Huang S, Li J, Xu M. Water surface variations monitoring and flood hazard analysis in Dongting Lake area using long-term Terra/MODIS data time series[J]. Natural Hazards, 2012, 62(1):93-100.
[9] Long Y, Tang R, Wu C, et al. Estimating real-time water area of Dongting Lake using water level information[J]. Water, 2019, 11(6):1240.
[10] Yang L, Wang L, Yu D, et al. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978-2018[J]. Journal of Hydrology, 2020, 587:124954.
[11] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
[12] Peng Y, He G, Wang G, et al. Surface water changes in Dongting Lake from 1975 to 2019 based on multisource remote-sensing images[J]. Remote Sensing, 2021, 13(9):1827.
[13] 强海洋, 崔耀平. 黄河滩区综合治理与高质量管护研究[J]. 中国国土资源经济, 2020, 33(5):39-43.
[13] Qiang H Y, Cui Y P. Research on comprehensive management and high quality management and protection of the Yellow River beach area[J]. Natural Resource Economics of China, 2020, 33(5):39-43.
[14] 孙煜航, 杜鹏举, 程舒鹏, 等. 黄河下游宽滩区荒草湿地生境分布与时空变化研究[J]. 人民黄河, 2022, 44(3):85-90.
[14] Sun Y H, Du P J, Cheng S P, et al. Study on distribution and spatial-temporal variation of grass wetland habitats along the wide floodplain of the lower Yellow River[J]. Yellow River, 2022, 44(3):85-90.
[15] Olshen R A, Breiman L, Friedman J, et al. Classification and regression trees[M]. Newyork: Chapman and Hall, 1984.
[16] Hansen M C, Reed B. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products[J]. International Journal of Remote Sensing, 2000, 21(6/7):1365-1373.
[17] Feng M, Sexton J O, Channan S, et al. A global,high-resolution (30-m) inland water body dataset for 2000:First results of a topographic-spectral classification algorithm[J]. International Journal of Digital Earth, 2016, 9(2):113-133.
[1] TIAN Zhao, LIANG Ailin. Remote sensing-based monitoring and analysis of residential carbon emissions[J]. Remote Sensing for Natural Resources, 2023, 35(4): 43-52.
[2] LIU Yalin. Remote sensing interpretation and analysis of the survey of the Tianshui-Longnan Railway based on realistic scene images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 227-234.
[3] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[4] Jiaming LAI, Wunian YANG. Dynamic changes of vegetation cover in natural forest area of western Sichuan in recent 29 years based on RS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 132-138.
[5] Yuhai FAN, Hui WANG, Xingke YANG, Qiming PENG, Xuwen QIN, Jinzhong YANG, Shaopeng ZHANG, Furong TAN. Application of high-resolution remote sensing technology to the prospecting for rare metal mineralization belt[J]. Remote Sensing for Land & Resources, 2018, 30(1): 128-134.
[6] YU Deqing, YU Shuchen, HE Qiuhua, LI Chang'an, WEI Chuanyi. Monitoring of Dongting Lake atrophy in the past 100 years by combining historical map and remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 116-122.
[7] WANG Jining, MENG Yonghui, ZHANG Lixia. Remote sensing monitoring and change analysis of Yellow River Estuary coastline in the past 42 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 188-193.
[8] CHEN Jun, QUAN Wenting. Scale properties of the apparent reflectance of false dark pixel: A case study of the images of AWiFS and LISS sensors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 33-36.
[9] MA Hong-Zhang, LIU Qin-Huo, WEN Jian-Guang, SHI Jian. The Numerical Simulation and Difference Analysis of Soil Temperature on Thermal Infrared and L Bands[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 26-32.
[10] CHENG Zhi-Yan, ZHAO Pei-Song. The Remote Sensing Alteration Information Extraction and Metallogenic Prognosis of the Boka Gold Deposit in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 135-140.
[11] ZHANG Rui-Jiang. The Method and Procedure of Metallogenic Prognosis Based on Remote Sensing Technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 58-64.
[12] FANG Hong-bin, LIU Shun-xi, YANG Qing-hua, GAN Fu-ping,YOU Shu-Cheng, QI J. AN APPLICATION EVALUATION OF THE CBERS 02B SATELLITE
ON-ORBIT IMAGE DATA FOR LAND AND RESOURCES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 34-47.
[13] YANG Qing-Hua, ZENG Fu-Nian, CAO Wen-Yu, QI Jian-Wei, FAN Jing-Hui. THE APPLICATION OF REMOTE SENSING TECHNOLOGY TO ENVIRONMENT AND RESOURCES MONITORING IN THE PERIPHERAL AREAS OF BEIJING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 76-80.
[14] TIAN Su-Rong, SUN Yong-Jun, LI You-Gang, PAN Chun-Mei. AN INVESTIGATION OF WETLAND CHANGES BASED ON MULTI-REMOTE SENSING DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 81-84.
[15] QIN Zhi-Hao, ZHANG Li-Jian, GAO Mao-Fang, QIN Xiao-Min, QIU Jian-Jun. THE APPLICATION OF REMOTE SENSING TECHNOLOGY
TO AGRICULTURAL THREE-DIMENSIONAL
POLLUTION MONITORING IN CHINA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech