|
|
|
|
|
|
Advances in research and application of remote sensing-based snow monitoring products |
SUN Xiyong1,2( ), LIU Jiafeng1, FAN Jinghui1( ), ZHANG Wenkai1, SHI Lijuan3, QIU Yubao3, ZHU Farong4 |
1. China Aero Geophysical Survey & Remote Sensing Center for Natural Resources,Beijing 100083,China 2. School of Geography and Information Engineering,China University of Geoscience(Wuhan),Wuhan 430074, China 3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094,China 4. School of Land Science and Technology,China University of Geoscience(Beijing),Beijing 100083, China |
|
|
Abstract Snow proves to be both an important factor in characterizing the surface cryosphere and a critical parameter for weather and hydrological phenomena. Employing remote sensing to conduct long-term and large-scale monitoring of snow morphologies and their changes plays a vital role in research into global climate change, investigations into hydrology and water resources, and geological disaster prevention. After decades of development, significant progress has been made in the field of remote sensing-based snow monitoring technology both in China and abroad. Accordingly, the products for remote sensing-based snow monitoring have become increasingly abundant, and the snow-orientated inversion algorithms have been continuously improved. This paper provides a summary of the existing, widely applied products after categorizing them into three types: snow-cover extent (SEC), snow coverage, and snow depth/snow water equivalent (SWE) products. Furthermore, this study organizes the commercialized remote sensing inversion algorithms used in existing, typical SEC and SWE products. The review of advances in the relevant scientific research reveals that, with the constant presence of sensors with high temporal and spatial resolutions in China and abroad and the support of both novel optical and microwave data sources and new technologies, researchers have gradually improved the accuracy of snow-orientated inversion algorithms by optimizing these algorithms based on regional characteristics. This will provide more support for continuously improving remote sensing-based snow monitoring products in the future.
|
Keywords
remote sensing-based snow monitoring product
snow cover
SWE
snow-orientated inversion algorithm
|
|
Issue Date: 03 September 2024
|
|
|
[1] |
Estilow T W, Young A H, Robinson D A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring[J]. Earth System Science Data, 2015, 7(1):137-142.
|
[2] |
沙依然·外力, 毛炜峄. 基于AMSR2被动微波积雪参量高精度反演方法研究[J]. 冰川冻土, 2016, 38(1):145-158.
|
[2] |
Sayran W, Mao W Y. A research on the method of deriving high-precision snow parameters from AMSR2 passive microwave remote sensing data[J]. Journal of Glaciology and Geocryology, 2016, 38(1):145-158.
|
[3] |
王芝兰, 张飞民, 王澄海, 等. 1980—2019年青藏高原积雪深度时空差异性分析[J]. 冰川冻土, 2022, 44(3):810-821.
doi: 10.7522/j.issn.1000-0240.2022.0079
|
[3] |
Wang Z L, Zhang F M, Wang C H, et al. Analysis on spatial and temporal difference of snow depth over the Tibetan Plateau from 1980 to 2019[J]. Journal of Glaciology and Geocryology, 2022, 44(3):810-821.
doi: 10.7522/j.issn.1000-0240.2022.0079
|
[4] |
王顺久. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 2017, 36(5):1153-1164.
doi: 10.7522/j.issn.1000-0534.2016.00117
|
[4] |
Wang S J. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteorology, 2017, 36(5):1153-1164.
doi: 10.7522/j.issn.1000-0534.2016.00117
|
[5] |
刘一静, 孙燕华, 钟歆玥, 等. 从第三极到北极:积雪变化研究进展[J]. 冰川冻土, 2020, 42(1):140-156.
doi: 10.7522/j.issn.1000-0240.2020.0007
|
[5] |
Liu Y J, Sun Y H, Zhong X Y, et al. Changes of snow cover in the Third Pole and the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(1):140-156.
doi: 10.7522/j.issn.1000-0240.2020.0007
|
[6] |
王泽坤, 甘甫平, 闫柏琨, 等. 雪深和雪水当量被动微波反演及应用进展[J]. 自然资源遥感, 2022, 34(3):1-9.doi:10.6046/zrzyyg.2021322.
|
[6] |
Wang Z K, Gan F P, Yan B K, et al. Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress[J]. Remote Sensing for Natural Resources, 2022, 34(3):1-9.doi:10.6046/zrzyyg.2021322.
|
[7] |
蒋玲梅, 崔慧珍, 王功雪, 等. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6):1237-1262.
doi: 10.11873/j.issn.1004-0323.2020.6.1237
|
[7] |
Jiang L M, Cui H Z, Wang G X, et al. Progress on remote sensing of snow,surface soil frozen/thaw state and soil moisture[J]. Remote Sensing Technology and Application, 2020, 35(6):1237-1262.
|
[8] |
Yang J, Jiang L, Shi J, et al. Monitoring snow cover using Chinese meteorological satellite data over China[J]. Remote Sensing of Environment, 2014, 143:192-203.
|
[9] |
Marchane A, Jarlan L, Hanich L, et al. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas Mountain range[J]. Remote Sensing of Environment, 2015, 160:72-86.
|
[10] |
韩琛惠. 新一代静止气象卫星积雪判识算法的改进与应用研究[D]. 南京: 南京信息工程大学, 2018.
|
[10] |
Han C H. Improvement and application of snow detection algorithm using the new generation of geostationary meteorological satellite[D]. Nanjing: Nanjing University of Information Science & Technology, 2018.
|
[11] |
曹海啸. 基于深度学习的新疆地区遥感积雪判识研究[D]. 南京: 南京信息工程大学, 2021.
|
[11] |
Cao H X. Study on remote sensing snow identification in Xinjiang based on deep learning[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.
|
[12] |
沙依然. 外力. 基于新一代先进卫星遥感AMSR2、VIIRS数据融合积雪监测模型及应用研究[D]. 南京: 南京信息工程大学, 2017.
|
[12] |
Sayran W. Study on the snow cover inversion model and its application based on the new generation advanced satellite AMSR2 and VIIRS data fusion[D]. Nanjing: Nanjing University of Information Science & Technology, 2017.
|
[13] |
除多, 郑照军, 拉巴卓玛, 等. 基于Landsat-8 OLI的青藏高原IMS 4 km雪冰产品精度评价[J]. 遥感技术与应用, 2021, 36(6):1223-1235.
doi: 10.11873/j.issn.1004-0323.2021.6.1223
|
[13] |
Chu D, Zheng Z J, Labazhuoma, et al. Accuracy assessment of IMS 4 km snow and ice products on the Tibetan Plateau based on Landsat-8 OLI images[J]. Remote Sensing Technology and Application, 2021, 36(6):1223-1235.
|
[14] |
马光义. 基于高时空分辨率卫星遥感影像的积雪判识算法研究与应用[D]. 南京: 南京信息工程大学, 2020.
|
[14] |
Ma G Y. Research and application of snow recognition algorithm using high temporal-spatial resolution remote sensing imageries[D]. Nanjing: Nanjing University of Information Science and Technology. 2020.
|
[15] |
吴杨, 张佳华, 徐海明, 等. 卫星反演积雪信息的研究进展[J]. 气象, 2007, 33(6):3-10.
|
[15] |
Wu Y, Zhang J H, Xu H M, et al. Advances in study of snow-cover from remote sensing data[J]. Meteorological Monthly, 2007, 33(6):3-10.
|
[16] |
肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6):590-605.
doi: 10.11867/j.issn.1001-8166.2018.06.0590
|
[16] |
Xiao X X, Zhang T J. Passive microwave remote sensing of snow depth and snow water equivalent:Overview[J]. Advances in Earth Science, 2018, 33(6):590-605.
|
[17] |
李长春, 徐轩, 包安明, 等. 基于FY3B-MWRI数据新疆区域积雪深度反演[J]. 遥感技术与应用, 2018, 33(6):1030-1036.
|
[17] |
Li C C, Xu X, Bao A M, et al. The Study on snow depth retrieval in Xinjiang region based on FY3B-MWRI data[J]. Remote Sensing Technology and Application, 2018, 33(6):1030-1036.
|
[18] |
朱淑珍, 黄法融, 冯挺, 等. 1979—2020年天山地区积雪量估算及其特征分析[J]. 冰川冻土, 2022, 44(3):984-997.
doi: 10.7522/j.issn.1000-0240.2022.0093
|
[18] |
Zhu S Z, Huang F R, Feng T, et al. Estimation of snow mass and its distribution characteristics from 1979 to 2020 in Tianshan Mountains,China[J]. Journal of Glaciology and Geocryology,2022, 44(3):984-997.
|
[19] |
蒋玲梅, 王培, 张立新, 等. FY3B-MWRI中国区域雪深反演算法改进[J]. 中国科学:地球科学, 2014, 44(3):531-547.
|
[19] |
Jiang L M, Wang P, Zhang L X, et al. Improvement of FY3B-MWRI snow depth inversion algorithm in China region[J]. Scientia Sinica (Terrae), 2014, 44(3):531-547.
|
[20] |
王功雪, 蒋玲梅, 武胜利, 等. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1):49-56.
doi: 10.11873/j.issn.1004-0323.2017.1.0049
|
[20] |
Wang G X, Jiang L M, Wu S L, et al. Intercalibrating FY-3B and FY-3C/MWRI for synergistic implementing to snow depth retrieval algorithm[J]. Remote Sensing Technology and Application, 2017, 32(1):49-56.
|
[21] |
李震, 曾群柱. 合成孔径雷达影象提取雪盖信息研究[J]. 环境遥感, 1996(3):200-205.
|
[21] |
Li Z, Zeng Q Z. Study on extracting snow cover information from synthetic aperture Radar images[J]. National Remote Sensing Bulletin, 1996(3):200-205.
|
[22] |
Dozier J, Marks D. Snow mapping and classification from Landsat thematic mapper data[J]. Annals of Glaciology, 1987, 9:97-103.
|
[23] |
Martinec J, Rango A. Interpretation and utilization of areal snow-cover data from satellites[J]. Annals of Glaciology, 1987, 9:166-169.
|
[24] |
Dozier J. Spectral signature of alpine snow cover from the Landsat thematic mapper[J]. Remote Sensing of Environment, 1989, 28:9-22.
|
[25] |
Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2):127-140.
|
[26] |
Hall D K, Foster J L, Verbyla D L, et al. Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska[J]. Remote Sensing of Environment, 1998, 66(2):129-137.
|
[27] |
Klein A G, Hall D K, Riggs G A. Improving snow cover mapping in forests through the use of a canopy reflectance model[J]. Hydrological Processes, 1998, 12(1011):1723-1744.
|
[28] |
Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1/2):181-194.
|
[29] |
Salomonson V V, Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment, 2004, 89(3):351-360.
|
[30] |
Hori M, Sugiura K, Kobayashi K, et al. A 38-year (1978—2015) northern hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors[J]. Remote Sensing of Environment, 2017, 191:402-418.
|
[31] |
Wang X, Wang J. Retrieving snow cover in forests of Qilian Mountains from Landsat optional land imager(OLI)[C]// 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Milan,Italy.IEEE, 2015:751-753.
|
[32] |
Wang G, Jiang L, Shi J, et al. Snow-covered area retrieval from Himawari-8 AHI imagery of the Tibetan Plateau[J]. Remote Sensing, 2019, 11(20):2391.
|
[33] |
Kwon Y, Yang Z L, Hoar T J, et al. Improving the radiance assimilation performance in estimating snow water storage across snow and land-cover types in North America[J]. Journal of Hydrometeorology, 2017, 18(3):651-668.
|
[34] |
Masiokas M H, Villalba R, Luckman B H, et al. Snowpack variations in the central Andes of Argentina and Chile,1951—2005:Large-scale atmospheric influences and implications for water resources in the region[J]. Journal of Climate, 2006, 19(24):6334-6352.
|
[35] |
Metsämäki S J, Anttila S T, Markus H J, et al. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model[J]. Remote Sensing of Environment, 2005, 95(1):77-95.
|
[36] |
Painter T H, Rittger K, McKenzie C, et al. Retrieval of subpixel snow covered area,grain size,and albedo from MODIS[J]. Remote Sensing of Environment, 2009, 113(4):868-879.
|
[37] |
Rittger K, Painter T H, Dozier J. Assessment of methods for mapping snow cover from MODIS[J]. Advances in Water Resources, 2013, 51:367-380.
|
[38] |
施建成. MODIS亚像元积雪覆盖反演算法研究——纪念杰出的地理学家、冰川学家施雅风先生逝世一周年[J]. 第四纪研究, 2012, 32(1):6-15.
|
[38] |
Shi J C. An automatic algorithm on estimating sub-pixel snow cover from modis[J]. Quaternary Sciences, 2012, 32(1):6-15.
|
[39] |
Hao S, Jiang L, Shi J, et al. Assessment of MODIS-based fractional snow cover products over the Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2):533-548.
|
[40] |
赵宏宇, 郝晓华, 郑照军, 等. 基于FY-3D/MERSI-Ⅱ的积雪面积比例提取算法[J]. 遥感技术与应用, 2018, 33(6):1004-1016.
|
[40] |
Zhao H Y, Hao X H, Zheng Z J, et al. A new algorithm of fractional snow cover basing on FY-3D/MERSI-Ⅱ[J]. Remote Sensing Technology and Application, 2018, 33(6):1004-1016.
|
[41] |
朱骥, 施建成, 张祥信, 等. 基于AVHRR/210d合成数据的青藏高原亚像元雪填图[J]. 武汉大学学报(信息科学版), 2017, 42(12):1725-1730.
|
[41] |
Zhu J, Shi J C, Zhang X X, et al. Subpixel snow mapping using AVHRR/2 10-day compositing data of Qinghai-Tibet Plateau[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1725-1730.
|
[42] |
Allen R C Jr, Durkee P A, Wash C H. Snow/cloud discrimination with multispectral satellite measurements[J]. American Meteorological Society, 1990.
|
[43] |
Slater M T, Sloggett D R, Rees W G, et al. Potential operational multi-satellite sensor mapping of snow cover in maritime sub-polar regions[J]. International Journal of Remote Sensing, 1999, 20(15/16):3019-3030.
|
[44] |
Huang Y, Xu J, Xu J, et al. HMRFS-TP:Long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model[J]. Earth System Science Data, 2022, 14(9):4445-4462.
|
[45] |
Moosavi V, Malekinezhad H, Shirmohammadi B. Fractional snow cover mapping from MODIS data using wavelet-artificial intelligence hybrid models[J]. Journal of Hydrology, 2014, 511:160-170.
|
[46] |
Dozier J, Painter T H, Rittger K, et al. Time-space continuity of daily maps of fractional snow cover and albedo from MODIS[J]. Advances in Water Resources, 2008, 31(11):1515-1526.
|
[47] |
McCreight J L, Small E E. Modeling bulk density and snow water equivalent using daily snow depth observations[J]. The Cryosphere, 2014, 8(2):521-536.
|
[48] |
Takala M, Luojus K, Pulliainen J, et al. Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements[J]. Remote Sensing of Environment, 2011, 115(12):3517-3529.
|
[49] |
施建成, 熊川, 蒋玲梅. 雪水当量主被动微波遥感研究进展[J]. 中国科学:地球科学, 2016, 46(4):529-543.
|
[49] |
Shi J C, Xiong C, Jiang L M. Review of snow water equivalent microwave remote sensing[J]. Scientia Sinica (Terrae), 2016, 46(4):529-543.
|
[50] |
黄新宇, 冯筠. 冰雪微波遥感研究进展[J]. 遥感技术与应用, 2004, 19(6):533-536.
|
[50] |
Huang X Y, Feng Y. The development of study on the snow ice using microwave remote sensing data[J]. Remote Sensing Technology and Application, 2004, 19(6):533-536.
|
[51] |
赵亮, 朱玉祥, 程亮, 等. 遥感-测站相结合的动态雪深反演方法初探[J]. 应用气象学报, 2010, 21(6):685-697.
|
[51] |
Zhao L, Zhu Y X, Cheng L, et al. A dynamic approach to retrieving snow depth based on integration of remote sensing and observed data[J]. Journal of Applied Meteorological Science, 2010, 21(6):685-697.
|
[52] |
Mätzler C. Applications of the interaction of microwaves with the natural snow cover[J]. Remote Sensing Reviews, 1987, 2(2):259-387.
|
[53] |
Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9:39-44.
|
[54] |
Gladkova I, Grossberg M, Bonev G, et al. Increasing the accuracy of MODIS/aqua snow product using quantitative image restoration technique[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):740-743.
|
[55] |
Lee Y K, Kongoli C, Key J. An in-depth evaluation of heritage algorithms for snow cover and snow depth using AMSR-E and AMSR2 measurements[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(12):2319-2336.
|
[56] |
Foster J L, Chang A T C, Hall D K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm,a revised algorithm and a snow depth climatology[J]. Remote Sensing of Environment, 1997, 62(2):132-142.
|
[57] |
Foster J L, Sun C, Walker J P, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005, 94(2):187-203.
|
[58] |
曹梅盛, 冯学智, 金德洪. 积雪的若干光谱反射特征[J]. 科学通报, 1982, 27(20):1259-1261.
|
[58] |
Cao M S, Feng X Z, Jin D H. Some spectral reflection characteristics of snow cover[J]. Chinese Science Bulletin, 1982, 27(20):1259-1261.
|
[59] |
曹梅盛, 冯学智, 金德洪. 积雪若干光谱反射特征的初步研究[J]. 冰川冻土, 1984, 6(3):15-26,99-102.
|
[59] |
Cao M S, Feng X Z, Jin D H. Preliminary research on some characteristics of the spectral reflection of snow cover[J]. Journal of Glaciology and Geocryology, 1984, 6(3):15-26,99-102.
|
[60] |
曹梅盛, 李培基, Robinson D A, 等. 中国西部积雪SMMR微波遥感的评价与初步应用[J]. 环境遥感, 1993(4):260-269.
|
[60] |
Cao M S, Li P J, Robinson D A, et al. Evaluation and primary application of microwave remote sensing smmr-derived snow cover in western China[J]. National Remote Sensing Bulletin, 1993(4):260-269.
|
[61] |
车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3):363-368.
|
[61] |
Che T, Li X, Gao F. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368.
|
[62] |
孙知文, 施建成, 杨虎, 等. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2):264-267.
|
[62] |
Sun Z W, Shi J C, Yang H, et al. A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J]. Remote Sensing Technology and Application, 2007, 22(2):264-267.
|
[63] |
Kelly R E, Chang A T, Tsang L, et al. A prototype AMSR-E global snow area and snow depth algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):230-242.
|
[64] |
Kelly R. The AMSR-E snow depth algorithm:Description and initial results[J]. Journal of Remote Sensing, 2009, 29:307-317.
|
[65] |
Taheri M, Mohammadian A. An overview of snow water equivalent:Methods,challenges,and future outlook[J]. Sustainability, 2022, 14(18):11395.
|
[66] |
Pulliainen J T, Grandell J, Hallikainen M T. HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1378-1390.
|
[67] |
Butt M J. A comparative study of Chang and HUT models for UK snow depth retrieval[J]. International Journal of Remote Sensing, 2009, 30(24):6361-6379.
|
[68] |
Dai L, Che T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang,China[J]. Remote Sensing of Environment, 2012, 127:14-29.
|
[69] |
Vafakhah M, Nasiri K A, Janizadeh S, et al. Evaluating different machine learning algorithms for snow water equivalent prediction[J]. Earth Science Informatics, 2022, 15(4):2431-2445.
|
[70] |
Forman B A, Reichle R H. Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow-covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9):4431-4441.
|
[71] |
Bair E H, Abreu Calfa A, Rittger K, et al. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan[J]. The Cryosphere, 2018, 12(5):1579-1594.
|
[72] |
Xiao X, Zhang T, Zhong X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210:48-64.
|
[73] |
Eppler J, Rabus B, Morse P. Snow water equivalent change mapping from slope-correlated synthetic aperture Radar interferometry (InSAR) phase variations[J]. The Cryosphere, 2022, 16(4):1497-1521.
|
[74] |
Tedesco M, Jeyaratnam J. A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures[J]. Remote Sensing, 2016, 8(12):1037.
|
[75] |
Kim R S, Durand M, Li D, et al. Estimating alpine snow depth by combining multifrequency passive radiance observations with ensemble snowpack modeling[J]. Remote Sensing of Environment, 2019, 226:1-15.
|
[76] |
Aalstad K, Westermann S, Schuler T V, et al. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites[J]. The Cryosphere, 2018, 12(1):247-270.
|
[77] |
Cortés G, Margulis S. Impacts of El Niño and La Niña on interannual snow accumulation in the Andes:Results from a high-resolution 31year reanalysis[J]. Geophysical Research Letters, 2017, 44(13):6859-6867.
|
[78] |
Wallbank J R, Cole S J, Moore R J, et al. Estimating snow water equivalent using cosmic-ray neutron sensors from the COSMOS-UK network[J]. Hydrological Processes, 2021, 35(5):16420.
|
[79] |
Dagurov P N, Chimitdorzhiev T N, Dmitriev A V, et al. Estimation of snow water equivalent from L-band Radar interferometry:Simulation and experiment[J]. International Journal of Remote Sensing, 2020, 41(24):9328-9359.
|
[80] |
Zhu J, Tan S, Tsang L, et al. Snow water equivalent retrieval using active and passive microwave observations[J]. Water Resources Research, 2021, 57(7):e2020WR027563.
|
[81] |
Cheng Q S, Chen Y M, Yang J X, et al. An enhanced method for estimating snow water equivalent in the central part of the Tibetan Plateau using raster segmentation and eigenvector spatial filtering regression model[J]. Journal of Mountain Science, 2022, 19(9):2570-2586.
|
[82] |
Yang Y, Fang S, Wu H, et al. High-resolution inversion method for the snow water equivalent based on the GF-3 satellite and optimized EQeau model[J]. Remote Sensing, 2022, 14(19):4931.
|
[83] |
Steiner L, Studemann G, Grimm D E, et al. (Near) real-time snow water equivalent observation using GNSS refractometry and RTKLIB[J]. Sensors, 2022, 22(18):6918.
|
[84] |
于小淇. 高亚洲地区积雪面积产品去云方法研究及精度验证[D]. 阜新: 辽宁工程技术大学, 2017.
|
[84] |
Yu X Q. Cloud removing method and accuracy verification of snow extent product in high Asia area[D]. Fuxin: Liaoning Technical University, 2017.
|
[85] |
段金亮. 基于混合像元分解的川西高原地区积雪覆盖度反演模型[D]. 成都: 西南交通大学, 2021.
|
[85] |
Duan J L. Inversion model of snow coverage in western Sichuan Plateau based on mixed pixel decomposition[D]. Chengdu: Southwest Jiaotong University, 2021.
|
[86] |
Ramsay B H. The interactive multisensor snow and ice mapping system[J]. Hydrological Processes, 1998, 12(10/11):1537-1546.
|
[87] |
Helfrich S R, McNamara D, Ramsay B H, et al. Enhancements to,and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS)[J]. Hydrological Processes, 2007, 21(12):1576-1586.
|
[88] |
张帅. 基于CLDAS的遥感积雪产品同化研究与应用[D]. 南京: 南京信息工程大学, 2019.
|
[88] |
Zhang S. Research of remote sensing snow product assimilation based on CLDAS and its application[D]. Nanjing: Nanjing University of Information Science & Technology, 2019.
|
[89] |
黄晓东, 郝晓华, 王玮, 等. MODIS逐日积雪产品去云算法研究[J]. 冰川冻土, 2012, 34(5):1118-1126.
|
[89] |
Huang X D, Hao X H, Wang W, et al. Algorithms for cloud removal in MODIS daily snow products[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1118-1126.
|
[90] |
邱玉宝, 郭华东, 除多, 等. 青藏高原MODIS逐日无云积雪面积数据集(2002—2015年)[J]. 中国科学数据, 2016, 1(1):7-17.
|
[90] |
Qiu Y B, Guo H D, Chu D, et al. MODIS daily cloud-free snow cover products over Tibetan Plateau(2002—2015)[J]. China Scientific Data, 2016, 1(1):7-17.
|
[91] |
Parajka J, Blöschl G. Validation of MODIS snow cover images over Austria[J]. Hydrology and Earth System Sciences, 2006, 10(5):679-689.
|
[92] |
邹逸凡, 孙鹏, 张强, 等. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6):1641-1658.
doi: 10.7522/j.issn.1000-0240.2021.0065
|
[92] |
Zou Y F, Sun P, Zhang Q, et al. Analysis on spatial-temporal variation of snow cover and its influencing factors in the Hengduan Mountains from 2001 to 2019[J]. Journal of Glaciology and Geocryology, 2021, 43(6):1641-1658.
doi: 10.7522/j.issn.1000-0240.2021.0065
|
[93] |
陈思勇. MODIS积雪产品去云算法研究及应用[D]. 兰州: 兰州大学, 2021.
|
[93] |
Chen S Y. Research and application of cloud removal algorithm for MODIS snow products[D]. Lanzhou: Lanzhou University, 2021.
|
[94] |
周婵. 青藏高原地表反照率与积雪遥感产品的分析与应用研究[D]. 南京: 南京信息工程大学, 2016.
|
[94] |
Zhou C. Analysis and application of remote sensing products of surface albedo and snow cover in Qinghai-Tibet Plateau[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.
|
[95] |
谢佩瑶, 韩超, 欧阳志棋, 等. 青藏高原不同土地覆盖类型下积雪面积判别算法优化[J]. 冰川冻土, 2023, 45(3):1168-1179.
doi: 10.7522/j.issn.1000-0240.2022.0364
|
[95] |
Xie P Y, Han C, Ouyang Z Q, et al. Optimization of snow area discrimination algorithm under different land cover types in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2023, 45(3):1168-1179.
doi: 10.7522/j.issn.1000-0240.2022.0364
|
[96] |
Metsämäki S, Pulliainen J, Salminen M, et al. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment[J]. Remote Sensing of Environment, 2015, 156:96-108.
|
[97] |
梁顺林, 李小文, 王锦地, 等. 定量遥感:理念与算法[M].2版. 北京: 科学出版社, 2019.
|
[97] |
Liang S L, Li X W, Wang J D. Quantitative remote sensing:Ideas and algorithms[M].2nd ed. Beijing: Science Press, 2019.
|
[98] |
赵文宇. 基于被动微波遥感和MODIS产品的天山雪水当量降尺度研究[D]. 石河子: 石河子大学, 2016.
|
[98] |
Zhao W Y. Downscaling of snow water equivalent in Tianshan Mountains based on passive microwave remote sensing and MODIS products[D]. Shihezi: Shihezi University, 2016.
|
[99] |
邱玉宝, 卢洁羽, 石利娟, 等. 高亚洲地区被动微波遥感雪水当量数据集[J]. 中国科学数据, 2019, 4(1):110-125.
|
[99] |
Qiu Y B, Lu J Y, Shi L J, et al. Passive microwave remote sensing data of snow water equivalent in High Asia[J]. China Scientific Data, 2019, 4(1):110-125.
|
[100] |
刘晓敬. 被动微波遥感雪深反演混合像元问题研究[J]. 测绘学报, 2022, 51(2):313.
doi: 10.11947/j.AGCS.2022.20200430
|
[100] |
Liu X J. Study on the mixed pixel effect on passive microwave snow depth retrieval[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):313.
doi: 10.11947/j.AGCS.2022.20200430
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|