Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 243-251     DOI: 10.6046/zrzyyg.2023257
|
Spatiotemporal analysis of economy in China’s primary cities affected by the COVID-19 pandemic based on remote sensing of night light
LI Ruikai1(), ZHAO Zongze1(), TANG Xiaojie2, ZHANG Jiayun1, WANG Guan1, ZHANG Lijuan1
1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2. Zhengzhou Technology and Business University, Zhengzhou 451400, China
Download: PDF(5099 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Corona Virus Disease 2019 (COVID-19) pandemic significantly affected China’s economy. This study investigated China’s five cities that witnessed large-scale COVID-19 outbreaks based on NPP-VIIRS night light (NTL) data. A fitting model between the NTL index and GDP statistics was established. This model can reflect the monthly economic variations, yielding the spatial distribution of GPD. Finally, this study analyzed the trend in the spatial variations of the economy in the five cities during the COVID-19 pandemic by analyzing the differences in monthly GDP density. The results indicate that the GDP predicted using the GDP spatialization based on the NTL index exhibited relatively small errors and can reflect the impacts of the COVID-19 pandemic on the urban economy in an intuitive and clear manner. Under the influence of mobility policies, the marginal areas of most of the cities experienced economic recession in the early and late stages of the pandemic, with economic growth observed in the middle stage of the pandemic. In contrast, the central areas of the cities experienced economic recession in the middle stage of the pandemic, were subjected to minor impacts in its early stage, and witnessed a rapid economic recovery in its late stage. Additionally, the economy in the central areas of the cities was more resistant to the impacts of the pandemic than that in their marginal areas.

Keywords night light index      COVID-19      major cities in China      GDP spatialization      spatiotemporal economic changes     
ZTFLH:  TP79  
  P237  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruikai LI
Zongze ZHAO
Xiaojie TANG
Jiayun ZHANG
Guan WANG
Lijuan ZHANG
Cite this article:   
Ruikai LI,Zongze ZHAO,Xiaojie TANG, et al. Spatiotemporal analysis of economy in China’s primary cities affected by the COVID-19 pandemic based on remote sensing of night light[J]. Remote Sensing for Natural Resources, 2025, 37(1): 243-251.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023257     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/243
城市 疫情严重时间段 疫情发展过程
湖北省武汉市 2020年1—4月 2019年12月8日通报首例病例,2020年1月23日开始管控,3月17日起援鄂医疗队陆续撤离,4月8日解除离汉管控
江苏省南京市 2021年7—8月 2021年7月20日报告首例病例,7月22日起开始管控,8月19日全域转为低风险地区
陕西省西安市 2021年12月—2022年1月 2021年12月9日报告首例病例,12月23日开始管控,2022年1月23日全域转为低风险地区
吉林省长春市 2022年2—4月 2022年3月初发现病例,3月20日新增病例速度达到顶点,进行管控,4月下旬疫情得到逐步控制
上海市 2022年3—5月 2022年3月1日报告首例病例,3月13日起疫情快速扩散,4月1日实施管控,6月1日解除管控
Tab.1  Research cities and time periods
数据类型 数据来源
NPP-VIIRS NTL数据 美国国家海洋大气管理局NOAA下属的NCEI国家环境信息中心
行政区划数据 中国科学院资源环境科学与数据中心
年度GDP统计资料 《中国城市统计年鉴》
月度GDP统计资料 各地市《统计年鉴》
Tab.2  Data sources
Fig.1-1  NTL images of the study areas
Fig.1-2  NTL images of the study areas
城市 GDP空间化模型 R2
湖北省武汉市 y = 262.09x - 102.98 0.952 8
江苏省南京市 y = 210.19x - 248.23 0.925 1
陕西省西安市 y = 250.80x - 278.10 0.912 7
吉林省长春市 y = 133.70x + 255.07 0.936 6
上海市 y = 511.55x - 4 178.10 0.906 7
Tab.3  The spatial model of GDP in the study area
年份 湖北省
武汉市
江苏省
南京市
陕西省
西安市
吉林省
长春市
上海市
2012年 1.66 11.71 0.73 -10.27 -7.17
2013年 14.99 17.37 30.67 6.35 15.77
2014年 -5.20 3.60 6.03 2.58 -6.90
2015年 0.99 -7.02 -8.05 6.03 7.74
2016年 -4.77 -11.48 -7.63 -0.73 -7.04
2017年 -0.79 -3.52 -4.00 4.61 9.16
2018年 -5.12 -4.52 -3.27 -2.09 2.17
2019年 -5.31 -3.63 -3.33 1.15 -1.40
2020年 7.11 2.86 -6.20 -4.76 -1.61
2021年 0.88 2.68 5.45 -1.72 -6.88
Tab.4  Relative error of GDP forecast values in the study area (%)
Fig.2  GDP density map in the study area
区县名 R2 区县名 R2
西安市长安区 0.951 9 西安市灞桥区 0.873 0
西安市雁塔区 0.912 4 西安市未央区 0.935 6
南京市玄武区 0.899 0 南京市江宁区 0.903 3
南京市溧水区 0.948 8 南京市栖霞区 0.880 0
武汉市东西湖区 0.947 8 武汉市洪山区 0.908 1
武汉市江岸区 0.845 0 武汉市武昌区 0.847 6
Tab.5  Accuracy verification of GDP spatialization
Fig.3  Changes of economic space in Wuhan
Fig.4  GDP trend of Wuhan districts and counties
Fig.5  Changes of economic space in Nanjing
Fig.6  GDP Trend of Nanjing districts and counties
Fig.7  Changes of economic space in Xi’an
Fig.8  GDP trend of Xi’an districts and counties
Fig.9  Changes of economic space in Changchun
Fig.10  GDP trend of Changchun districts and counties
Fig.11  Changes of economic space in Shanghai
Fig.12  GDP trend of Shanghai districts and counties
[1] 张清敏. 新冠肺炎疫情与全球卫生外交[J]. 当代世界, 2020(4):35-41.
[1] Zhang Q M. Global health diplomacy in COVID-19 epidemic[J]. Contemporary World, 2020(4):35-41.
[2] Yue W, Gao J, Yang X. Estimation of gross domestic product using multi-sensor remote sensing data:A case study in Zhejiang Pro-vince,East China[J]. Remote Sensing, 2014, 6(8):7260-7275.
[3] 李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015, 44(6):591-601.
doi: 10.11947/j.AGCS.2015.20150149
[3] Li D R, Li X. An overview on data mining of nighttime light remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):591-601.
doi: 10.11947/j.AGCS.2015.20150149
[4] 郭永德, 高金环, 马洪兵. Suomi-NPP夜间灯光数据与GDP的空间关系分析[J]. 清华大学学报(自然科学版), 2016, 56(10):1122-1130.
[4] Guo Y D, Gao J H, Ma H B. Spatial correlation analysis of Suomi-NPP nighttime light data and GDP data[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10):1122-1130.
[5] 顾鹏程, 王世新, 周艺, 等. 基于时间序列DMSP/OLS夜间灯光数据的GDP预测模型[J]. 中国科学院大学学报, 2019, 36(2):188-195.
doi: 10.7523/j.issn.2095-6134.2019.02.006
[5] Gu P C, Wang S X, Zhou Y, et al. Estimation of GDP based on long time series of DMSP/OLS nighttime light images[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2):188-195.
doi: 10.7523/j.issn.2095-6134.2019.02.006
[6] 陈颖彪, 郑子豪, 吴志峰, 等. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2):205-223.
doi: 10.18306/dlkxjz.2019.02.005
[6] Chen Y B, Zheng Z H, Wu Z F, et al. Review and prospect of application of nighttime light remote sensing data[J]. Progress in Geo-graphy, 2019, 38(2):205-223.
[7] 余柏蒗, 王丛笑, 宫文康, 等. 夜间灯光遥感与城市问题研究: 数据、方法、应用和展望[J]. 遥感学报, 2021, 25(1):342-364.
[7] Yu B L, Wang C X, Gong W K, et al. Nighttime light remote sen-sing and urban studies: Data,methods,applications,and prospects[J]. National Remote Sensing Bulletin, 2021, 25(1):342-364.
[8] 韩向娣, 周艺, 王世新, 等. 夜间灯光遥感数据的 GDP 空间化处理方法[J]. 地球信息科学学报, 2012, 14(1):128-136.
doi: 10.3724/SP.J.1047.2012.00128
[8] Han X D, Zhou Y, Wang S X, et al. GDP spatialization in China based on nighttime imagery[J]. Journal of Geo-information Science, 2012, 14(1):128-136.
[9] 刘杨, 李宏伟, 杨斌程, 等. 基于遥感数据和POI数据的GDP空间化研究——以北京市为例[J]. 地域研究与开发, 2021, 40(2):27-32,39.
[9] Liu Y, Li H W, Yang B C, et al. Spatialization of GDP based on remote sensing data and POI data:A case study of Beijing City[J]. Areal Research and Development, 2021, 40(2):27-32,39.
[10] Dai Z, Hu Y, Zhao G. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels[J]. Sustainability, 2017, 9(2):305.
[11] 孙久文, 周孝伦. 多维视角下的长三角城市群空间结构及其影响因素——基于NPP-VIIRS夜间灯光数据和高德人口迁徙数据[J]. 经济地理, 2023, 43(5):78-88.
doi: 10.15957/j.cnki.jjdl.2023.05.009
[11] Sun J W, Zhou X L. Spatial structure and influencing factors of the Yangtze River Delta urban agglomeration from a multidimensional perspective:Based on NPP-VIIRS nighttime lighting data and Gaode’s population migration data[J]. Economic Geography, 2023, 43(5):78-88.
[12] 李翔, 朱江, 尹向东, 等. 利用珞珈一号夜间灯光数据的广东省GDP空间化[J]. 遥感信息, 2021, 36(2):40-45.
[12] Li X, Zhu J, Yin X D, et al. Spatializing GDP of Guangdong Pro-vince based on Luojia No.1 night light data[J]. Remote Sensing Information, 2021, 36(2):40-45.
[13] Zhao Z, Tang X, Wang C, et al. Analysis of the spatial and temporal evolution of the GDP in Henan Province based on nighttime light data[J]. Remote Sensing, 2023, 15(3):716.
[14] 江泽霖, 邓健, 栾海军, 等. 基于逐日夜间灯光遥感的新冠肺炎疫情变化信息快速提取——以北京市为例[J]. 测绘通报, 2022 (7):43-48.
doi: 10.13474/j.cnki.11-2246.2022.0201
[14] Jiang Z L, Deng J, Luan H J, et al. Rapid extraction of COVID-19 information based on nighttime light remote sensing:A case study of Beijing[J]. Bulletin of Surveying and Mapping, 2022(7):43-48.
[15] 陶金花, 范萌, 顾坚斌, 等. 新冠病毒疫情期间复工复产卫星遥感监测[J]. 遥感学报, 2020, 24(7):824-836.
[15] Tao J H, Fan M, Gu J B, et al. Satellite observations of the return-to-work over China during the period of COVID-19[J]. Journal of Remote Sensing, 2020, 24(7):824-836.
[16] Elvidge C D, Ghosh T, Hsu F C, et al. The dimming of lights in China during the COVID-19 pandemic[J]. Remote Sensing, 2020, 12(17):2851.
[17] Liu Q, Sha D, Liu W, et al. Spatiotemporal patterns of COVID-19 impact on human activities and environment in mainland China using nighttime light and air quality data[J]. Remote Sensing, 2020, 12(10):1576.
[18] Shao Z, Tang Y, Huang X, et al. Monitoring work resumption of Wuhan in the COVID-19 epidemic using daily nighttime light[J]. Photogrammetric Engineering and Remote Sensing, 2021, 87(3):195-204.
[19] 裴韬, 王席, 宋辞, 等. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2):188-210.
doi: 10.12082/dqxxkx.2021.200434
[19] Pei T, Wang X, Song C, et al. Review on spatiotemporal analysis and modeling of COVID-19 pandemic[J]. Journal of Geo-information Science, 2021, 23(2):188-210.
[20] Zhao M, Cheng W, Zhou C, et al. GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery[J]. Remote Sensing, 2017, 9(7):673.
[1] NIU Zhensheng, YANG Xin, CHEN Chao, LIAO Xiang, ZHANG Xiaoxuan. Analysis of changes in the economic development characteristics of the Chengdu-Chongqing urban agglomeration using remote sensing data on nighttime light[J]. Remote Sensing for Natural Resources, 2024, 36(4): 272-281.
[2] MA Dongling, REN Yongqiang, CHEN Xingtong, KONG Jinge. Analysis of the variations and causes of air pollutants in Tangshan City before and after the COVID-19 pandemic from 2019 to 2021[J]. Remote Sensing for Natural Resources, 2024, 36(1): 275-280.
[3] LI Yimin, WU Bowen, LIU Shiyi, LI Yingying, YUAN Jing. Risks and the prevention and control deployment of COVID-19 infection along the border of Ruili City based on the AHP-entropy weight method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 218-226.
[4] WANG Zheng, JIA Gongxu, ZHANG Qingling, HUANG Yue. Impacts of COVID-19 epidemic on the spatial distribution of GDP contributed by secondary and tertiary industries in Guangdong Province in the first quarter of 2020[J]. Remote Sensing for Natural Resources, 2021, 33(3): 184-193.
[5] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[6] LI Feng, MI Xiaonan, LIU Jun, LIU Xiaoyang. Spatialization of GDP in Beijing using NPP-VIIRS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech