Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 252-259     DOI: 10.6046/zrzyyg.2023250
|
A method for automatic mapping of the remote sensing monitoring results of national nature reserves based on ArcPy and map optimization
WANG Tixin1,2(), YANG Jinzhong1(), XING Yu1, WANG Kaijian1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083, China
2. School of Earth Science and Resources, China University of Geosciences(Beijing), Beijing 100083,China
Download: PDF(2024 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing monitoring in national-level nature reserves covers a land area of approximately 1.7 million km2. This process involves the delineation of numerous features that indicate variations in the nature reserves, requiring specialized expertise. As a result, ensuring the accuracy and normalization of mapping is challenging even using substantial human and material resources. This affects the quality and effectiveness of monitoring result applications and relevant services. To address this issue, employing geometric techniques like the Sutherland-Hodgman clipping algorithm based on the ArcPy package, along with the customized ArcToolbox tools for encapsulating automated mapping scripts, this study automatically extracted the information and images of features from a geographic database. Subsequently, this study automatically generated the distribution maps of features that reflected variations in national-level nature reserves. Over 50000 maps were plotted using the proposed method, with an accuracy of 100%. Practical application demonstrates that the automatic mapping for a single map can be completed within 29.06 s on average, significantly less than manual mapping. The proposed method can meet practical production needs, with the automated mapping scripts proving stable, reliable, and widely applicable. The proposed method can significantly enhance the efficiency of the applications of the monitoring results reflecting variations in the national-level nature reserves, holding great practical significance.

Keywords monitoring of a national-level nature reserve      ArcPy      remote sensing image      Sutherland-Hodgman algorithm     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tixin WANG
Jinzhong YANG
Yu XING
Kaijian WANG
Cite this article:   
Tixin WANG,Jinzhong YANG,Yu XING, et al. A method for automatic mapping of the remote sensing monitoring results of national nature reserves based on ArcPy and map optimization[J]. Remote Sensing for Natural Resources, 2025, 37(1): 252-259.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023250     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/252
Fig.1  Design architecture for automatic mapping
字段名称 字段编码 字段类型 字段长度/字符 使用描述
图斑编号 TBBH 文本 20 图斑唯一标识号,用于图面右侧图斑编号信息显示
SHI 文本 254 图斑中心点位置所属的市级行政区划,用于图面右侧行政区划信息显示
XIAN 文本 254 图斑中心点位置所属的县级行政区划,用于图面右侧行政区划信息显示
保护地名称 QMC 文本 254 国家相关部门公布的自然保护地的名字,用于图面右侧保护地名称信息显示
中心点X BHX 双精度 9.6 图斑的坐标信息,用于图面右侧中心点坐标信息显示
中心点Y BHY 双精度 8.6 图斑的坐标信息,用于图面右侧中心点坐标信息显示
前类型 QLX 文本 18 图斑上期时相的土地利用类型,用于图面右侧具体变化情况信息显示
后类型 HLX 文本 18 图斑本期时相的土地利用类型,用于图面右侧具体变化情况信息显示
变化面积 BHMJ 双精度 16.2 用于图面右侧变化面积信息显示,单位是m2
本期时间 BQSJ 文本 8 本期时相使用的影像的获取时间,用于图面右下角本期数据源获取时间信息显示
上期时间 SQSJ 文本 8 上期时相使用的影像的获取时间,用于小图框左下角上期数据源获取时间信息显示
卫星 WX 文本 9 本期时相使用的影像的数据源,用于图面右下角本期数据源信息显示
是否持续变化 CXBH 文本 3 图斑是否在之前的图斑上发生变化,用于图面右侧持续变化信息显示,填“是”或“否”
上期图斑编号 SQBH 文本 50 若是持续变化,填写上次监测中持续变化的图斑编号,用于图面右侧上期编号信息显示
Tab.1  Field attribute information and usage description for automatic mapping
Fig.2  Flow chart of automatic mapping
Fig.3  Distribution map of mapped features for monitoring changes in national natural reserves
Fig.4  Comparison of spatial information optimization before and after mapping
Fig.5  Detailed flowchart of spatial information optimization
次数 所有图斑制图用时/s 单个图斑制图用时/s
第1次 2 419 28.46
第2次 2 249 26.46
第3次 2 743 32.27
平均 2 470 29.06
Tab.2  Automatic mapping time
[1] 新华社. 中共中央办公厅国务院办公厅印发《关于建立以国家公园为主体的自然保护地体系的指导意见》[J]. 中华人民共和国国务院公报, 2019(19):16-21.
[1] Xinhua News Agency. The general office of the central committee of the CPC and the general office of the state council print and issue the guiding opinions on establishing a system of natural reserves with National Parks as the main body[J]. Gazette of the State Council of the People’s Republic of China, 2019(19):16-21.
[2] 国家林业局自然保护区研究中心. 首届中国自然保护国际论坛召开[EB/OL].(2019-11-01) [2023-10-17].http://www.fnrrc.com/chinese/hydt/showcolumns.asp?ID=6109.
url: http://www.fnrrc.com/chinese/hydt/showcolumns.asp?ID=6109
[2] Nature reserve research center of national forestry and grassland administration. The 1st China international forum on nature conservation was held[EB/OL].(2019-11-01) [2023-10-17].http://www.fnrrc.com/chinese/hydt/showcolumns.asp?ID=6109.
url: http://www.fnrrc.com/chinese/hydt/showcolumns.asp?ID=6109
[3] 梅安新. 遥感导论[M]. 北京: 高等教育出版社,2001:5-6.
[3] Mei A X. An introduction to remote sensing[M]. Beijing: Higher Education Press,2001:5-6.
[4] 杨金中, 秦绪文, 张志. 矿山遥感监测理论方法与实践[M]. 北京: 测绘出版社,2011:1-2.
[4] Yang J Z, Qin X W, Zhang Z. Theory and practice on remote sensing monitoring of mine[M]. Beijing: Sino Maps Press,2011:1-2.
[5] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2):262-269.doi:10.6046/gtzyyg.2020181.
[5] Chen D, Yao W L. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land and Resources, 2021, 33(2):262-269.doi:10.6046/gtzyyg.2020181.
[6] 武蓓蓓, 徐青, 李华孝杨, 等. 常用GIS制图软件地图符号设计现状分析[J]. 测绘与空间地理信息, 2022, 45(12):106-109.
[6] Wu B B, Xu Q, Li H X Y, et al. Analysis of the current situation of map symbol design in commonly used GIS cartographic software[J]. Geomatics & Spatial Information Technology, 2022, 45(12):106-109.
[7] 许娟, 张翼, 周琪, 等. 基于QGIS的四川地震应急专题图精细化设计与实现[J]. 四川地震, 2022(1):24-29.
[7] Xu J, Zhang Y, Zhou Q, et al. Refined design and implementation of the thematic map of earthquake emergency in Sichuan based on QGIS[J]. Earthquake Research in Sichuan, 2022(1):24-29.
[8] 张伟, 邱崇涛, 谢明宏, 等. 利用Python自动化生成地质解释图件[J]. 物探与化探, 2021, 45(1):186-191.
[8] Zhang W, Qiu C T, Xie M H, et al. Automatic drawing of geological interpretation map by Python[J]. Geophysical and Geochemical Exploration, 2021, 45(1):186-191.
[9] 马红利, 李红文, 王祖亮. 某省区县级应急图快速制图技术研究[J]. 测绘技术装备, 2021, 23(3):57-61.
[9] Ma H L, Li H W, Wang Z L. Rapid mapping technology of district and county level emergency map in A Province[J]. Geomatics Technology and Equipment, 2021, 23(3):57-61.
[10] 张清林. 基于1∶10 000 DLG的图库一体化数据生产实践[J]. 测绘与空间地理信息, 2022, 45(8):259-261.
[10] Zhang Q L. Practice of graph-database integration data production based on 1∶10 000 DLG[J]. Geomatics & Spatial Information Technology, 2022, 45(8):259-261.
[11] 王祥. 利用ArcGIS数据驱动页面实现快速编制图集的方法研究[J]. 测绘与空间地理信息, 2023, 46(7):79-81.
[11] Wang X. Research on the method of quickly compiling atlas using ArcGIS data-driven pages[J]. Geomatics & Spatial Information Technology, 2023, 46(7):79-81.
[12] 汪永华, 蔚远江, 温志新, 等. 基于ArcGIS软件的油气资源与盆地评价工业制图技术与应用[J]. 地球科学与环境学报, 2022, 44(4):675-684.
[12] Wang Y H, Yu Y J, Wen Z X, et al. Industrial mapping technology and application of oil & gas resources and basin evaluation based on ArcGIS software[J]. Journal of Earth Sciences and Environment, 2022, 44(4):675-684.
[13] 刁明光, 薛涛, 李建存, 等. 基于ArcGIS的矿山遥感监测成果编制系统[J]. 国土资源遥感, 2016, 28(3):194-199.doi: 10.6046/gtzyyg.2016.03.30.
[13] Diao M G, Xue T, Li J C, et al. Production data compilation system of mine remote sensing monitoring based on ArcGIS[J]. Remote Sensing for Land and Resources, 2016, 28(3):194-199.doi: 10.6046/gtzyyg.2016.03.30.
[14] 刁明光, 刘芳, 谭专条, 等. 矿山遥感监测解译记录表自动生成方法研究与实现[J]. 国土资源遥感, 2018, 30(4):212-217.doi: 10.6046/gtzyyg.2018.04.32.
[14] Diao M G, Liu F, Tan Z T, et al. Research and implement on automatic production method of mine remote sensing monitoring interpretation record table[J]. Remote Sensing for Land and Resources, 2018, 30(4):212-217.doi: 10.6046/gtzyyg.2018.04.32.
[15] 车紫进, 李会宾, 贾曲, 等. 土壤调查成果制图软件设计与实现[J]. 中国农业信息, 2022, 34(6):59-66.
[15] Che Z J, Li H B, Jia Q, et al. Design and implementation of soil survey results mapping software[J]. China Agricultural Informatics, 2022, 34(6):59-66.
[16] ESRI. What is ArcPy?—ArcMap | Documentation[EB/OL] [2023-07-13].https://desktop.arcgis.com/en/arcmap/latest/analyze/arcpy/what-is-arcpy-.htm.
url: https://desktop.arcgis.com/en/arcmap/latest/analyze/arcpy/what-is-arcpy-.htm
[17] 李霄, 刘莹, 姚维岭, 等. 基于ArcPy的违法矿山自动出图方法[J]. 国土资源遥感, 2020, 32(3):247-251.doi: 10.6046/gtzyyg.2020.03.32.
[17] Li X, Liu Y, Yao W L, et al. Automatic plotting of illegal mines based on ArcPy[J]. Remote Sensing for Land and Resources, 2020, 32(3):247-251.doi: 10.6046/gtzyyg.2020.03.32.
[18] 吴厚清, 熊维康, 聂晨晖, 等. ArcPy脚本工具在新型基础测绘质量控制中的应用[J]. 测绘通报, 2022(8):160-164.
doi: 10.13474/j.cnki.11-2246.2022.0250
[18] Wu H Q, Xiong W K, Nie C H, et al. Application of ArcPy scripting tool in quality control of new fundamental surveying and mapping[J]. Bulletin of Surveying and Mapping, 2022(8):160-164.
[19] 张天成, 何昊, 李丹丹, 等. 基于GIS的作物生产力专题图系统设计与实现[J]. 中国农学通报, 2023, 39(7):153-157.
doi: 10.11924/j.issn.1000-6850.casb2022-0261
[19] Zhang T C, He H, Li D D, et al. Design and implementation of crop productivity thematic map system based on GIS[J]. Chinese Agricultural Science Bulletin, 2023, 39(7):153-157.
doi: 10.11924/j.issn.1000-6850.casb2022-0261
[20] 王淑玲, 彭红春, 虎志伟. 基于Arcpy的地块分布图批量化处理[J]. 现代测绘, 2023, 46(2):61-64.
[20] Wang S L, Peng H C, Hu Z W. Mass production of plot distribution map based on arcpy[J]. Modern Surveying and Mapping, 2023, 46(2):61-64.
[21] 欧丁丁, 张琪, 尹祺卿, 等. 基于Arcpy的长顺县国储林实施方案小班设计图自动出图方法优化[J]. 中南林业调查规划, 2023, 42(1):37-42.
[21] Ou D D, Zhang Q, Yin Q Q, et al. Optimization of automatic drawing method for sub-compartment design drawings of Changshun County national reserve forest implementation plan based on arcpy[J]. Central South Forest Inventory and Planning, 2023, 42(1):37-42.
[22] 林金宝. 基于ArcPy的ArcGIS数据驱动制图及批量出图——以耕地质量等别评定制图为例[J]. 闽西职业技术学院学报, 2021, 23(3):104-108.
[22] Lin J B. ArcGIS data-driven mapping and batch mapping based on ArcPy:Taking the evaluation of cultivated land quality as an example[J]. Journal of Minxi Vocational and Technical College, 2021, 23(3):104-108.
[23] 刁明光, 薛涛, 李建存, 等. 基于地质信息元数据标准的多源空间数据管理系统[J]. 国土资源遥感, 2013, 25(1):165-170.doi: 10.6046/gtzyyg.2013.01.29.
[23] Diao M G, Xue T, Li J C, et al. The multi-source spatial data management system based on geological information metadata standard[J]. Remote Sensing for Land and Resources, 2013, 25(1):165-170.doi:10.6046/gtzyyg.2013.01.29.
[24] 刁明光, 赵元元, 赵丹宁, 等. 矿山遥感监测成果数据报表自动生成方法[J]. 科学技术与工程, 2020, 20(3):1107-1112.
[24] Diao M G, Zhao Y Y, Zhao D N, et al. Automatic generation method of production data report of mine remote sensing monitoring[J]. Science Technology and Engineering, 2020, 20(3):1107-1112.
[25] Sutherland I E, Hodgman G W. Reentrant polygon clipping[J]. Communications of the ACM, 1974, 17(1):32-42.
[26] Weiler K, Atherton P. Hidden surface removal using polygon area sorting[C]// Proceedings of the 4th annual conference on Computer graphics and interactive techniques.San Jose California. ACM,1977:214-222.
[27] Vatti B R. A generic solution to polygon clipping[J]. Communications of the ACM, 1992, 35(7):56-63.
[28] 张钧, 王鹏. 一种新的矢量数据多边形的快速裁剪算法[J]. 中国图象图形学报, 2008, 13(12):2409-2413.
[28] Zhang J, Wang P. A new fast polygon clipping algorithm for vector data[J]. Journal of Image and Graphics, 2008, 13(12):2409-2413.
[29] 孙家广, 胡事民. 计算机图形学基础教程[M]. 北京: 清华大学出版社,2005:23-29,36-39.
[29] Sun J G, Hu S M. Basic course of computer graphics[M]. Beijing: Tsinghua University Press,2005:23-29,36-39.
[1] XU Xinyu, LI Xiaojun, GE Junfei, LI Yikun. A multispectral image pansharpening algorithm based on nonsubsampled contourlet transform (NSCT) combined with a guided filter[J]. Remote Sensing for Natural Resources, 2025, 37(1): 24-30.
[2] CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
[3] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[4] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[5] ZHAO Jinling, HUANG Jian, LIANG Zijun, ZHAO Xuedan, JIN Tao, GE Hanghang, WEI Xiaoyan, SHAO Yuanzheng. BDANet-based assessment of building damage from earthquake disasters[J]. Remote Sensing for Natural Resources, 2024, 36(4): 193-200.
[6] TAI Jiayi, SHEN Li, QIAO Wenfan, ZHOU Wuzhen. Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings[J]. Remote Sensing for Natural Resources, 2024, 36(3): 154-162.
[7] YU Miao, JING Hongbo, WANG Xiang, LI Xingjiu. Multi-directional target detection based on depth features[J]. Remote Sensing for Natural Resources, 2024, 36(3): 267-271.
[8] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[9] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[10] ZHAO Binru, NIU Siwen, WANG Liyan, YANG Xiaotong, JIAO Hongbo, WANG Zike. An intelligent color enhancement method for high-resolution remote sensing images of the coastal zone of an island[J]. Remote Sensing for Natural Resources, 2024, 36(2): 70-79.
[11] ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
[12] LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
[13] LIU Yujia, XIE Shizhe, DU Yang, YAN Jin, NAN Yanyun, WEN Zhongkai. A two-stage remote sensing image inpainting network combined with spatial semantic attention[J]. Remote Sensing for Natural Resources, 2024, 36(1): 58-66.
[14] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[15] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech