Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 238-245     DOI: 10.6046/zrzyyg.2020266
|
Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic
WEI Geng(), HOU Yuqiao, ZHA Yong()
School of Geography Science, Nanjing Normal University, Nanjing 210023, China
Download: PDF(4833 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to compare and analyze the effects of social control and industrial shutdown induced by the COVID-19 epidemic on the particulate matter and aerosol types in Wuhan City, Hubei Province. To this end, the aerosol optical depth (AOD) and fine mode fraction (FMF) data of Wuhan City from December 1, 2019 to April 30, 2020 were obtained based on the data of atmospheric particulate matter (PM10 and PM2.5) and the data from MODIS aerosol products. Then the models of four types of aerosols (urban/industrial, sand-dust, clean marine, and mixed types) were established, obtaining the following results. During the period of social control and industrial shutdown, the concentration of atmospheric particulate matter showed a downward trend owing to the reduction in anthropogenic emissions. Meanwhile, the proportion of urban/industrial aerosols also showed a downward trend, while the proportion of dry and clean marine aerosols increased to 13.4% in the period except for the Spring Festival holiday. In contrast, the atmospheric particulate matter and the aerosols of the above types showed opposite trends after the ordered resumption of work and production. Compared with the same period during 2017—2019, the concentration of atmospheric particulate matter and aerosol parameters were also lower during the continuous control and shutdown after the Spring Festival. It can be inferred that MODIS aerosol products can be used to effectively obtain the characteristics of regional aerosols and thus provide data for the monitoring and governance of the regional atmospheric environment.

Keywords COVID-19      Wuhan City      particulate matter      MODIS      aerosol types     
ZTFLH:  P407X87  
Corresponding Authors: ZHA Yong     E-mail: 347128908@qq.com;yzha@njnu.edu.cn
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Geng WEI
Yuqiao HOU
Yong ZHA
Cite this article:   
Geng WEI,Yuqiao HOU,Yong ZHA. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020266     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/238
Fig.1  Image of Hubei Province and scope of Wuhan City
阶段 第一阶段 第二阶段 第三阶段 第四阶段
起止日期 20191001—20200123 20200124—20200131 20200201—20200311 20200312—20200430
天数/d 54 8 40 51
Tab.1  Time stage division during COVID-19 epidemic situation
年份 2017年 2018年 2019年
起止日期 0203—0314 0222—0402 0211—0322
天数/d 40 40 40
Tab.2  Division of stage III over past years
Fig.2  AOD and FMF spatial distribution in Wuhan City from December 2019 to April 2020
Fig.3  Classification of aerosol types
Fig.4  Daily mean mass concentration of particulate matter
阶段 第一阶段 第二阶段 第三阶段 第四阶段
PM10浓度值/(μg·m-3) 91.9 62.3 53.2 59.3
PM2.5浓度值/(μg·m-3) 66.3 52.9 40.3 34.5
AOD 0.43 0.57 0.62 0.74
FMF 0.52 0.73 0.44 0.48
Tab.3  Mean mass concentration of particulate matter and mean value of aerosol characteristics in each stage of COVID-19 epidemic situation
Fig.5  Daily mean mass concentration of particulate matter in stage III from 2017 to 2020
年份 2017年 2018年 2019年 2020年
PM10浓度值/(μg·m-3) 107.3 86.5 77.5 53.2
PM2.5浓度值/(μg·m-3) 76.6 52.4 55.5 40.3
AOD 0.81 0.68 0.67 0.62
FMF 0.56 0.50 0.54 0.44
Tab.4  Mean mass concentration of particulate matter and mean value of aerosol characteristics in stage III from 2017 to 2020
Fig.6  Spatial distribution of aerosol parameters in different stages of COVID-19 epidemic situation
Fig.7  Classification of aerosol characteristics in different stages of COVID-19 epidemic situation
Fig.8  Space distribution of aerosol parameters in stage Ⅲ from 2017 to 2020
Fig.9  Classification of aerosol characteristics in stage III from 2017 to 2020
[1] 毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5):625-634.
[1] Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosl in China[J]. Acta Meteorologica Sinica, 2002, 60(5):625-634.
[2] 张小曳. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J]. 气象学报, 2014, 72(6):1108-1117.
[2] Zhang X Y. Characteristics of the chemical components of aerosol particles in the various regions over China[J]. Acta Meteorologica Sinica, 2014, 72(6):1108-1117.
[3] 徐祥德. 城市化环境大气污染模型动力学问题[J]. 应用气象学报, 2002(13):1-12.
[3] Xu X D. Dynamic issues of urban atmospheric pollution models[J]. Quarterly Journal of Applied Meteorlolgy, 2002(13):1-12.
[4] 徐祥德, 施晓晖, 张胜军, 等. 北京及周边城市群落气溶胶影响域及其相关气候效应[J]. 科学通报, 2005, 50(22):2522-2530.
[4] Xu X D, Shi X H, Zhang S J, et al. The aerosol influence regions and related climate effects of Beijing and surrounding cities[J]. Chinese Science Bulletin, 2005, 50(22):2522-2530.
[5] Raghu B, Sailesh N B, Rajasekhar B B. Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335.
doi: 10.1021/es405533d url: https://pubs.acs.org/doi/10.1021/es405533d
[6] Peng R D, Bell M L, Geyh A S. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution[J]. Environmental Health Perspectives, 2009, 117(6):957-963.
doi: 10.1289/ehp.0800185 url: https://ehp.niehs.nih.gov/doi/10.1289/ehp.0800185
[7] Kloog I, Ridgway B, Koutrakis P, et al. Long and short term exposure to PM2.5 and mortality[J]. Epidemiology, 2013(24):555-561.
[8] Che H, Xia X, Zhu J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(4):2125-2138.
doi: 10.5194/acp-14-2125-2014 url: https://acp.copernicus.org/articles/14/2125/2014/
[9] Qi B, Hu D Y, Che H Z, et al. Seasonal variation of aerosol optical properties in an urban site of the Yangtze Delta Region of China[J]. Aerosol and Air Quality Research, 2016, 16(11):2884-2896.
doi: 10.4209/aaqr.2015.05.0350 url: https://aaqr.org/articles/aaqr-15-05-siseasia-0350
[10] 郑彬, 吴兑, 李菲, 等. 南海夏季风背景下的广州气溶胶光学特性变化特征[J]. 热带气象学报, 2013, 29(2):207-214.
[10] Zheng B, Wu D, Li F, et al. Variation of aerosol optical characteristics in Guangzhou on a backgroud of South China Sea summer monsoon[J]. Journal of Tropical Meteorology, 2013, 29(2):207-214.
[11] King M D, Kaufman Y J, Menzel W P, et al. Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer(MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30:2-27.
doi: 10.1109/36.124212 url: http://ieeexplore.ieee.org/document/124212/
[12] Kang N, Kumar K R, Hu K, et al. Long-term (2002—2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta[J]. Atmospheric Research, 2016, 181:29-43.
doi: 10.1016/j.atmosres.2016.06.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0169809516301612
[13] 郑有飞, 董自鹏, 吴荣军, 等. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2):224-234.
[13] Zheng Y F, Dong Z P, Wu R J, et al. Validation of MODIS aerosol optical thickness retrieval over Yangtze delta region of China[J]. Advances in Earth Science, 2011, 26(2):224-234.
[14] 朱爱华, 李成才. 北京地区MODIS卫星遥感气溶胶资料的检验与应用[J]. 环境科学学报, 2004, 24(1):86-90.
[14] Zhu A H, Li C C. Validation and application of MODIS remote aerosol information in Beijing[J]. Acta Scientiae Circumstantiae, 2004, 24(1):86-90.
[15] Lee K H, Kim Y J, Wolfgand V, et al. Sptio-teproral variability of satellite derived aerosol optical thickness over Northeast Asia in 2004[J]. Atmospheric Environment, 2007, 41:3959-3973.
doi: 10.1016/j.atmosenv.2007.01.048 url: https://linkinghub.elsevier.com/retrieve/pii/S135223100700101X
[16] Lee K H, Kim Y J, Kim M J. Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006, 40:5146-5155.
doi: 10.1016/j.atmosenv.2006.03.050 url: https://linkinghub.elsevier.com/retrieve/pii/S1352231006003633
[17] 贺军亮, 张淑媛, 李佳, 等. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
[17] He J L, Zhang S Y, Li J, et al. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. Remote Sensing for Land and Resources, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.
doi: 10.6046/gtzyyg.2016.02.20
[18] 张瑞芳, 于兴娜. 河南省气溶胶光学特性的时空变化特征[J]. 环境科学, 2020, 41(2):600-608.
[18] Zhang R F, Yu X N. Spatio-temporal distribution and variation characteristics of aerosol optical properties in Henan Province[J]. Environmental Science, 2020, 41(2):600-608.
[19] 施益强, 邓秋琴, 吴君, 等. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 31(1):106-113.doi: 10.6046/gtzyyg.2020.01.15.
doi: 10.6046/gtzyyg.2020.01.15
[19] Shi Y Q, Deng Q Q, Wu J, et al. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land and Resources, 2020, 31(1):106-113.doi: 10.6046/gtzyyg.2020.01.15.
doi: 10.6046/gtzyyg.2020.01.15
[20] 邬明权, 牛铮, 乔玉良, 等. 基于MODIS数据的北京气溶胶类型特性与影响因素分析[J]. 地球信息科学学报, 2009, 11(4):541-547.
[20] Wu M Q, Niu Z, Qiao Y L, et al. Aerosol types and its affecting factors over Beijing based on MODIS data[J]. Journal of Geo-Information Science, 2009, 11(4):541-547.
doi: 10.3724/SP.J.1047.2009.00541 url: http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1047.2009.00541
[21] 安晓丹, 张佳华, 刘学锋, 等. 华北平原夏收期间气溶胶卫星遥感探测分析[J]. 环境科学学报, 2016, 36(9):3386-3392.
[21] An X D, Zhang J H, Liu X F, et al. Aerosol detection analysis from satellite during the harvest season over North China Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3386-3392.
[22] Anderson T L, Wu Y, Chu D A, et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D18):D18204.
doi: 10.1029/2005JD005978 url: http://doi.wiley.com/10.1029/2005JD005978
[23] Li L Y, Chen Y, Xie S D. Spatio-temporal variation of biogenic volatile organic compounds emissions in China[J]. Environmental Pollution, 2013, 182(6):157-168.
doi: 10.1016/j.envpol.2013.06.042 url: https://linkinghub.elsevier.com/retrieve/pii/S0269749113003667
[24] Barnaba F, Gobbi G P. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime,continental and Saharan dust particles over the basin from MODIS data in the year 2001[J]. Atmospheric Chemistry and Physics, 2004, 4:2367-2391.
doi: 10.5194/acp-4-2367-2004 url: https://acp.copernicus.org/articles/4/2367/2004/
[25] 郑祚芳, 陈家华, 祁文. 湖北省近50年气候变化特征分析[J]. 气象科学, 2002, 22(3):279-286.
[25] Zheng Z F, Chen J H, Qi W. The character of climate variation of Hubei Province during recent 50 years[J]. Scientia Meteorologica Sinica, 2002, 22(3):279-286.
[26] 许刚, 焦利民, 赵素丽, 等. 1990—2014年武汉市空气质量时空变化[J]. 环境工程, 2016, 34(4):80-85.
[26] Xu G, Jiao L M, Zhao S L, et al. Spatial and temporal variability of air quality in Wuhan City from 1990 to 2014[J]. Environmental Engineering, 2016, 34(4):80-85.
[27] 操文祥, 沈帆, 全继宏, 等. 武汉地区沙尘天气气溶胶粒径分布特性研究[J]. 中国环境监测, 2015, 31(6):47-52.
[27] Cao W X, Shen F, Quan J H, et al. Aerosol particle size distribution research during sand storm in Wuhan area[J]. Environmental Monitoring in China, 2015, 31(6):47-52.
[1] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[2] MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
[3] LI Yimin, WU Bowen, LIU Shiyi, LI Yingying, YUAN Jing. Risks and the prevention and control deployment of COVID-19 infection along the border of Ruili City based on the AHP-entropy weight method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 218-226.
[4] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[5] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[6] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[7] WANG Zheng, JIA Gongxu, ZHANG Qingling, HUANG Yue. Impacts of COVID-19 epidemic on the spatial distribution of GDP contributed by secondary and tertiary industries in Guangdong Province in the first quarter of 2020[J]. Remote Sensing for Natural Resources, 2021, 33(3): 184-193.
[8] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[9] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[10] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[11] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[12] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[13] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[14] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[15] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech