Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 142-151     DOI: 10.6046/zrzyyg.2023382
|
Data quality assessment of the AMS-3000 wide-field three-linear-array stereoscopic aerial survey system
LI Tianqi1(), ZHANG Xian1(), JIN Dingjian1, GAO Zihong1, HAN Yachao1, XU Ning2, GAO Han3, LI Gongxin2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China
3. Shandong Institute of Coal Geology Planning and Exploration, Jinan 250102, China
Download: PDF(5986 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The AMS-3000 wide-field three-linear-array stereoscopic aerial survey system (hereafter referred to as the AMS-3000 system) is China’s first independently developed airborne linear-array aerial survey system. It can obtain panchromatic and R-, G-, and B-band multispectral images. However, the data quality of these images lacks quantitative assessments and analyses. Focusing on the area along the Jinsha River within western Panzhihua City, Sichuan Province, this study assessed the spectral quality of the data obtained from the AMS-3000 system in terms of grayscale, texture, and energy features, and noise level. Moreover, this study compared the AMS-3000 system with the internationally recognized ADS100 aerial photography system and assessed the geometric accuracy of the AMS-3000 system using the 1∶2 000-scale terrain data. Additionally, this study analyzed the effectiveness of the AMS-3000 system in the geological industry by applying it to the investigation of the mineral resource exploitation status and geologic hazards. Overall, this study serves as a reference for the application promotion and improvement of the AMS-3000 system.

Keywords airborne remote sensing      wide-field three-linear-array stereoscopic aerial survey system      data quality assessment      geological application     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tianqi LI
Xian ZHANG
Dingjian JIN
Zihong GAO
Yachao HAN
Ning XU
Han GAO
Gongxin LI
Cite this article:   
Tianqi LI,Xian ZHANG,Dingjian JIN, et al. Data quality assessment of the AMS-3000 wide-field three-linear-array stereoscopic aerial survey system[J]. Remote Sensing for Natural Resources, 2025, 37(3): 142-151.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023382     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/142
指标 AMS-3000 ADS100(有效测绘区域)
波段 PAN,R,G,B PAN,R,G,B,NIR
焦距/mm 130 62.5
基高比 0.89 0.78
交汇角/(°) 21,27 14,27
立体成像角度/(°)
(前视,后视,前、后视)
21,27,48 26,19,45
像素/个 32 768 16 000
2 000 m航高像素
分辨率/m
0.077 0.16
横向视场角/(°) 64 60
2 000 m航高成图
比例尺
1∶1 000 1∶2 000
质量/kg 72 50
Tab.1  Main indicator parameters of AMS-3000 and ADS100
Fig.1  Location of the study area
Fig.2  DOM data of the sub-areas
灰度特征 波段 城市 矿区 山区
AMS-3000 ADS100 AMS-3000 ADS100 AMS-3000 ADS100
[最小值,
最大值]
R [3,253] [0,255] [1,255] [1,255] [9,253] [0,255]
G [9,253] [1,255] [8,255] [1,255] [13,253] [1,255]
B [5,253] [1,255] [5,255] [1,255] [9,253] [2,255]
均值 R 83.572 588 83.242 540 78.393 797 67.800 800 99.149 108 75.454 545
G 81.181 100 93.193 296 74.290 586 73.540 674 89.084 684 69.066 834
B 63.295 291 89.235 888 58.081 662 76.013 724 68.293 584 60.238 720
标准差 R 52.323 057 53.552 480 39.828 969 40.636 635 41.832 207 33.027 923
G 44.248 676 49.221 029 32.615 564 35.067 013 31.444 863 24.655 547
B 40.835 132 47.381 074 28.465 731 31.483 471 24.778 054 18.606 961
Tab.2  Comparison of grayscale information in AMS-3000 and ADS100 data
纹理特征 波段 城市 矿区 山区
AMS-3000 ADS100 AMS-3000 ADS100 AMS-3000 ADS100
同质性 R 0.494 340 0.462 353 0.569 834 0.524 927 0.402 981 0.456 152
G 0.519 803 0.463 152 0.614 883 0.562 582 0.462 169 0.527 081
B 0.589 533 0.544 028 0.685 704 0.654 352 0.554 611 0.674 007
对比度 R 12.800 055 13.759 801 5.134 182 5.540 763 10.659 980 6.292 375
G 10.022 243 11.853 681 3.739 602 3.996 770 6.581 586 3.885 167
B 7.698 285 7.150 093 2.608 960 2.311 272 3.644 220 1.610 590
角二阶矩 R 0.230 291 0.209 421 0.265 584 0.232 212 0.161 592 0.177 437
G 0.239 672 0.204 768 0.292 180 0.246 072 0.180 039 0.211 315
B 0.291 734 0.248 043 0.354 139 0.313 351 0.222 764 0.318 608
R 1.708 204 1.776 137 1.582 664 1.691 923 1.942 928 1.870 011
G 1.670 413 1.786 373 1.488 344 1.626 877 1.859 003 1.730 920
B 1.498 315 1.618 479 1.296 948 1.392 717 1.685 434 1.365 261
Tab.3  Comparison of texture information in AMS-3000 and ADS100 data
能量特征 波段 城市 矿区 山区
AMS-3000 ADS100 AMS-3000 ADS100 AMS-3000 ADS100
细节能量 R 7.538 428 7.877 600 2.820 369 3.096 583 5.798 322 3.503 917
G 5.951 535 6.834 283 2.013 087 2.278 667 3.519 743 2.048 597
B 4.547 111 4.235 989 1.363 186 1.312 545 1.932 782 0.872 410
边缘能量 R 1.676 443 0.819 110 0.746 305 0.584 681 1.956 013 1.358 207
G 1.509 385 0.924 938 0.730 304 0.547 750 1.509 776 0.808 992
B 1.242 619 0.924 938 0.495 589 0.384 763 0.728 511 0.291 373
Tab.4  Comparison of energy information in AMS-3000 and ADS100 data
区域 波段 硬质铺装地 植被 土壤
AMS-3000 ADS100 AMS-3000 ADS100 AMS-3000 ADS100
非阴影区 R 38.888 514 31.233 256 13.925 392 12.723 567 35.683 666 26.081 087
G 34.505 191 31.579 201 13.402 149 14.200 166 25.386 520 25.170 174
B 27.489 724 24.708 639 12.019 379 8.166 513 17.625 233 21.232 276
阴影区 R 7.067 904 10.868 610 10.274 748 5.3230 767 7.342 963 6.019 994
G 7.117 442 9.729 526 10.505 827 5.1982 205 6.661 557 6.044 159
B 6.359 533 6.350 836 10.797 800 7.7845 438 6.296 068 5.399 476
Tab.5  Comparison of noise level in AMS-3000 and ADS100 data
Fig.3  Distribution of geometric accuracy check points
指标 dX dY dXY dZ
中误差 0.276 0.263 0.381 0.506
平均误差 0.027 -0.039 0.351 0.026
最大误差 0.486 -0.495 0.649 1.094
Tab.6  Geometric accuracy evaluation of check points(m)
Fig.4  Example images of coal mining and mine restoration and management
Fig.5  Image example of collapse geological hazard
[1] 陈洁, 高子弘, 王珊珊, 等. 三峡库区航空遥感地质调查技术发展综述[J]. 国土资源遥感, 2020, 32(2):1-10.doi:10.6046/gtzyyg.2020.02.01.
[1] Chen J, Gao Z H, Wang S S, et al. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land and Resources, 2020, 32(2):1-10.doi:10.6046/gtzyyg.2020.02.01.
[2] 许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
[2] Xu Q, Guo C, Dong X J. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
[3] 姚园, 许永森, 丁亚林, 等. 大视场三线阵航空测绘相机光学系统设计[J]光学精密工程, 2018, 26(9):2335-2344.
[3] Yao Y, Xu Y S, Ding Y L, et al. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Optics and Precision Engineering, 2018, 26(9):2335-2344.
[4] 朱芳芳. 基于ADS100影像的城市建筑物信息提取[D]. 兰州: 兰州交通大学, 2020.
[4] Zhu F F. Extracting urban building information based on ADS100 images[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
[5] 金鼎坚, 王建超, 吴芳, 等. 航空遥感技术及其在地质调查中的应用[J]. 国土资源遥感, 2019, 31(4):1-10.doi:10.6046/gtzyyg.2019.04.01.
[5] Jin D J, Wang J C, Wu F, et al. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land and Resources, 2019, 31(4):1-10.doi:10.6046/gtzyyg.2019.04.01.
[6] 王涛, 张艳, 张永生, 等. 国产机载大视场三线阵CCD相机GNSS偏心矢量和IMU视轴偏心角标定技术[J]. 测绘学报, 2018, 47(11):1474-1486.
doi: 10.11947/j.AGCS.2018.20170679
[6] Wang T, Zhang Y, Zhang Y S, et al. Investigation on GNSS lever arms and IMU bore sight misalignment calibration of domestic airborne wide-field three CCD camera[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1474-1486.
[7] 王涛, 张艳, 张永生, 等. 国产机载大视场三线阵CCD相机几何标定[J]. 遥感学报, 2020, 24(6):739-751.
[7] Wang T, Zhang Y, Zhang Y S, et al. Geometric calibration of domestic airborne wide-field three-linear CCD camera[J]. Journal of Remote Sensing, 2020, 24(6):739-751.
[8] 张峰, 桑夺坤. 徕卡ADS100相机使用运-5飞行平台在1∶500地形图测绘中的应用[J]. 测绘通报, 2015(8): 133-134.
[8] Zhang F, Sang D K. The application of Leica ADS100 camera using Yun-5 flight platform in 1∶500 topographic mapping[J]. Bulletin of Surveying and Mapping, 2015(8):133-134.
[9] 吴兴, 张霞, 孙雪剑, 等. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
doi: 10.11873/j.issn.1004-0323.2018.2.0233
[9] Wu X, Zhang X, Sun X J, et al. Radiation quality evaluation of SPARK hyperspectral satellite image[J]. Remote Sensing Techno-logy and Application, 2018, 33(2):233-240.
[10] 刘睿, 孙九林, 王卷乐, 等. 环境与灾害监测预报小卫星CCD 数据质量评价[J]. 地球科学进展, 2011, 26 (9):971-979.
[10] Liu R, Sun J L, Wang J L, et al. Data quality evaluation of Chinese HJ CCD sensor[J]. Advances in Earth Science, 2011, 26 (9):971-979.
[11] 覃帮勇. 高光谱遥感数据质量评价体系及方法研究[D]. 北京: 中国科学院大学, 2014.
[11] Qin B Y. Study on the quality evaluation system and method of hyperspectral remote sensing data[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[12] 周雨霁, 田庆久. EO-1 Hyperion高光谱数据的质量评价[J]. 地球信息科学, 2008, 10(5):678-683.
[12] Zhou Y J, Tian Q J. Image quality evaluation of EO-1 Hyperion sensor[J]. Geo-Information Science, 2008, 10(5):678-683.
[13] 曹春旭. 资源一号02C卫星数据质量评价[D]. 北京: 中国地质大学(北京), 2014.
[13] Cao C X. Date quality evaluation of ZY-1-02C satellite[D]. Beijing: China University of Geosciences (Beijing), 2014.
[14] 王崇倡, 薛荣荣, 赵世湖, 等. GF-5卫星高光谱影像数据质量评价与分析[J]. 地理与地理信息科学, 2021, 37(1):33-38,125.
[14] Wang C C, Xue R R, Zhao S H, et al. Quality evaluation and analysis of GF-5 hyperspectral image data[J]. Geography and Geo-Information Science, 2021, 37(1):33-38,125.
[15] 张立福, 王飒, 颜军, 等. 珠海一号高光谱数据辐射质量评价[J]. 遥感学报, 2023, 27(8):1925-1935.
[15] Zhang L F, Wang S, Yan J, et al. Quality evaluation of orbita hyperspectral images[J]. National Remote Sensing Bulletin, 2023, 27(8):1925-1935.
[16] 孙韬, 王鹏波, 方俊永, 等. 天绘一号03星三线阵/多光谱载荷影像质量评价[J]. 遥感学报, 2016, 20(6):1335-1341.
[16] Sun T, Wang P B, Fang J Y, et al. Image quality assessment of the three-linear-array/multispectral sensors of Mapping Satellite-1 03[J]. Journal of Remote Sensing, 2016, 20(6):1335-1341.
[17] 田艳琴, 郭平, 卢汉清. 基于灰度共生矩阵的多波段遥感图像纹理特征的提取[J]. 计算机科学, 2004, 31(12):162-163,195.
[17] Tian Y Q, Guo P, Lu H Q. Texture feature extraction of multiband remote sensing image based on gray level co-occurrence matrix[J]. Computer Science, 2004, 31(12):162-163,195.
[18] 薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2006, 34(1):155-158,134.
[18] Bo H, Ma F L, Jiao L C. Research on computation of GLCM of image texture[J]. Acta Electronica Sinica, 2006, 34(1):155-158,134.
[19] 刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4):622-635.
[19] Liu L, Kuang G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4):622-635.
[20] 侯群群, 王飞, 严丽. 基于灰度共生矩阵的彩色遥感图像纹理特征提取[J]. 国土资源遥感, 2013, 25(4):26-32.doi:10.6046/gtzyyg.2013.04.05.
[20] Hou Q Q, Wang F, Yan L. Extraction of color image texture feature based on gray-level co-occurrence matrix[J]. Remote Sensing for Land and Resources, 2013, 25(4):26-32.doi:10.6046/gtzyyg.2013.04.05.
[21] 姚成, 赵晋陵. 泰国THEOS遥感影像质量评价[J]. 安徽农业大学学报, 2015, 42(2):316-321.
[21] Yao C, Zhao J L. Quality evaluation of the THEOS satellite imagery using textural and spectral features[J]. Journal of Anhui Agricultural University, 2015, 42(2):316-321.
[22] Haralick R M. Image texture survey[M]. Handbook of Statistics, 1982,2:399-415.
[23] 徐文, 龙小祥, 李庆鹏. “高分二号”卫星相机影像辐射质量评价[J]. 航天返回与遥感, 2015, 36(4):1-9.
[23] Xu W, Long X X, Li Q P. Radiometric image quality assessment of GF-2 satellite PMS camera[J]. Spacecraft Recovery and Remote Sensing, 2015, 36(4):1-9.
[24] 徐文, 龙小祥, 李庆鹏, 等. “高分四号”卫星影像辐射与几何精度评价[J]. 航天返回与遥感, 2016, 37(4):16-25.
[24] Xu W, Long X X, Li Q P, et al. Image radiometric and geometric accuracy evaluation of GF-4 satellite[J]. Spacecraft Recovery and Remote Sensing, 2016, 37(4):16-25.
[25] 马晶, 王荣彬, 高娟, 等. 一种遥感影像的自动噪声评价方法[J]. 遥感信息, 2012, 27(3):78-82.
[25] Ma J, Wang R B, Gao J, et al. An automatic noise evaluation me-thod of remote sensing image[J]. Remote Sensing Information, 2012, 27(3):78-82.
[26] 王春媛. 遥感图像几何校正及目标识别技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[26] Wang C Y. Research on geometric correction and object recognition for remote sensing image[D]. Harbin: Harbin Institute of Techno-logy, 2014.
[27] 魏丹丹, 甘甫平, 尚坤, 等. CBERS-04星PAN/MUX图像几何定位精度评价[J]. 无线电工程, 2018, 48(5):401-405.
[27] Wei D D, Gan F P, Shang K, et al. Evaluation of geometric positional accuracy of PAN /MUX image for CBERS-04 satellite[J]. Radio Engineering, 2018, 48(5):401-405.
[28] 国家测绘局.CH/T 9008.1—2010基础地理信息数字成果1∶500、1∶1 000、1∶2 000数字线划图[S]. 北京: 国家测绘局, 2010.
[28] State Bureau of Surveying and Mapping. CH/T 9008.1-2010 Digital products of fundamental geographic information 1∶500,1∶1 000,1∶2 000 digital line graphs[S]. Beijing: State Bureau of Surveying and Mapping, 2010.
[29] 国家测绘局.CH/T 9008.2—2010基础地理信息数字成果1∶500、1∶1 000、1∶2 000数字高程模型[S]. 北京: 国家测绘局, 2010.
[29] State Bureau of Surveying and Mapping. CH/T 9008.2-2010 Digital products of fundamental geographic information 1∶500,1∶1 000,1∶2 000 digital line graphs[S]. Beijing: State Bureau of Surveying and Mapping, 2010.
[30] 国家测绘局.CH/T 9008.3—2010基础地理信息数字成果1∶500、1∶1 000、1∶2 000数字正射影像图[S]. 北京: 国家测绘局, 2010.
[30] State Bureau of Surveying and Mapping. CH/T 9008.3-2010 Digital products of fundamental geographic information 1∶500,1∶1 000,1∶2 000 digital line graphs[S]. Beijing: State Bureau of Surveying and Mapping, 2010.
[31] 郑雄伟, 彭孛, 尚坤. 基于国产卫星的遥感地质解译能力评估[J]. 自然资源遥感, 2021, 33(3):1-10.doi:10.6046/zrzyyg.2020357.
[31] Zheng X W, Peng B, Shang K. Assessment of the interpretation ability of domestic satellites in geological remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3):1-10.doi:10.6046/zrzyyg.2020357.
[32] 陈玲, 贾佳, 王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019, 31(1):1-7.doi:10.6046/gtzyyg.2019.01.01.
[32] Chen L, Jia J, Wang H Q. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land and Resources, 2019, 31(1):1-7.doi:10.6046/gtzyyg.2019.01.01.
[1] Kai CHEN, Chengfa FANG, Ru LI. Research on airborne remote sensing emergency flight organization strategy in natural disaster[J]. Remote Sensing for Land & Resources, 2018, 30(3): 55-59.
[2] Hongrui ZHENG, Zhigang XU, Le GAN, Ling CHEN, Jinzhong YANG, Peijun DU. Synthetic aperture Radar remote sensing technology in geological application: A review[J]. Remote Sensing for Land & Resources, 2018, 30(2): 12-20.
[3] WEI Yongming, WEI Xianhu, CHEN Yu. Analysis of distribution regularity and development tendency of earthquake secondary geohazards in Yingxiu-Maoxian section along the Minjiang River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 179-186.
[4] GAN Fu-Ping, YU Hai-Yang, WANG Yong-Jiang, ZHANG Chun-Ling. THE EVALUATION OF APPLYING CBERS—02B SIMULATED DATA TO GEOLOGICAL RESOURCE SURVEY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 30-33.
[5] LUO Yuan-Hua, ZHANG Zhi-Feng, LI Zhi-Zhong, YANG Ri-Hong. THE APPLICATION OF REMOTE SENSING TECHNIQUE
TO DYNAMIC MONITORING FOR CLEARING UP THE
RESERVIOR REGION IN THE THREE GORGES PROJECT
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(2): 69-71.
[6] LIU De-chang, YE Fa-wang, Zhang Jie-lin, ZHAO Ying-jun, HUANG Xian-fang, HUANG Shu-tao, ZHANG Jing-bo, ZHU Min-qiang . RESEARCH ON THE POST-REMOTE SENSING APPLICATION TECHNOLOGY AND ITS GEOLOGICAL PRACTICE: A CASE STUDY OF URANIUM RESOURCE EXPLORATION IN DONGSHENG—SHENMU AREA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(1): 11-14.
[7] WANG Zhi-hua, YANG Ri-hong, WANG Yi. AN AIRBORNE REMOTE SENSING SURVEY OF QIANJIANGPING LANDSLIDE IN ZI-GUI SHAXISHA TOWN[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(3): 5-9,53.
[8] Zhang Yibin, Qu Jiahui. REMOTE SENSING TECHNIQUE DEVELOPMENT AND ITS GEOLOGICAL APPLICATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(4): 67-75.
[9] Gong Weihong, Wang Yiming . APPLICATION OF AERIAL INFRARED REMOTE SENSING TO THE FRUIT-TREE RESOURCES INVESTIGATION AT YUNCHENG AREA OF SHANXI[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(4): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech