Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 133-141     DOI: 10.6046/zrzyyg.2023340
|
A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland
CHEN Min1(), PENG Shuan2,3, WANG Tao2, WU Xuefang2, LIU Runpu2, CHEN Yushuo2, FANG Yanru2, YANG Pingjian2()
1. Geological Publishing House, Beijing 100083, China
2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3. School of Environmental Science and Engineering, Tianjin University, Tianjin 300073, China
Download: PDF(4118 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Water bodies serve as one of the three major elements in maintaining wetlands. Their dynamic monitoring can effectively protect wetland ecosystems. Conventional methods for monitoring water bodies in wetlands employ field surveys or manual interpretation of remote sensing images, which are costly and inefficient, and inapplicable to continuous dynamic monitoring. In recent years, using methods like machine and deep learning to extract water body features from satellite remote sensing images has developed into an effective means for monitoring water bodies in wetlands. Based on the hyperspectral images from the ZY1-02D satellite, this study classified the water bodies in the Baiyangdian wetland using machine learning, convolutional and transformer neural networks. The accuracy and computational efficiency of water body classification under different spectral preprocessing methods and different image neighborhood sizes in training were compared to explore the optimal data preprocessing method and classification model for water bodies in wetlands. The results indicate that deep learning significantly outperformed machine learning in classification accuracy and computational efficiency. In particular, the spectral-spatial residual network (SSRN) model based on the convolutional neural network achieved the highest classification accuracy (OA: 99.09 %, Recall: 99.62 %, F1-score: 0.99) under conditions of all spectral bands and a 9×9 neighborhood size. Besides, despite a low signal-to-noise ratio, the atmospheric water vapor absorption band contained significant information, assisting in improving the classification accuracy of water bodies in the wetland during model training and prediction. The results of this study are expected to provide methodological support for the business operation of water body classification of wetlands.

Keywords wetland classification      hyperspectral image      machine learning      deep learning      Baiyangdian     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Min CHEN
Shuan PENG
Tao WANG
Xuefang WU
Runpu LIU
Yushuo CHEN
Yanru FANG
Pingjian YANG
Cite this article:   
Min CHEN,Shuan PENG,Tao WANG, et al. A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland[J]. Remote Sensing for Natural Resources, 2025, 37(3): 133-141.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023340     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/133
Fig.1  Schematic diagram study area
参数名称 VNIR波段 SWIR波段
波长范围/nm 395~1 040 1 005~2 501
幅宽/km 60 60
地面分辨率/m 30 30
光谱分辨率/nm 10 20
波段数量 76 90
图像量化/bits 12 12
相对辐射定标精度/% 0.32 0.65
Tab.1  Parameters of hyperspectral sensor on ZY1-02D
Fig.2  Study roadmap of Baiyangdian wetland waterbody classification
Fig.3  Sample for water body classification in Baiyangdian wetland
土地利用类型 训练样本/个 验证样本/个 总面积/km2
湖泊水面 1 000 46 977 43.18
内陆滩涂 1 000 15 866 15.18
村庄 1 000 5 448 5.80
沼泽地 1 000 2 848 3.46
水浇地 1 000 10 956 10.76
Tab.2  Areas and counts of training and test samples
模型 每类样本的分类准确率 OA/% mAP/% F1 R/%
湖泊水面/% 内陆滩涂/% 村庄/% 沼泽地/% 水浇地/%
SVM 97.51 59.66 99.27 46.75 92.60 83.90 89.73 0.82 89.30
AdaBoost 98.17 69.96 99.61 71.90 93.29 89.48 95.61 0.89 93.23
RF 97.72 61.96 98.43 57.54 91.51 85.33 92.67 0.84 90.06
CNN1D 97.51 84.76 99.56 90.11 96.10 94.54 98.13 0.95 95.75
RNN 95.80 87.08 99.13 85.68 96.09 94.03 97.74 0.94 94.95
SSTN(Pixel) 96.87 83.94 98.53 89.34 94.99 93.79 97.55 0.94 95.07
ViT(Pixel) 97.09 88.59 99.38 91.91 95.00 95.11 98.50 0.95 95.83
Tab.3  Wetland classification accuracy based on different pixel-based methods
Fig.4  Classification results using different pixel-based methods
模型 每类样本的分类准确率 OA/% mAP/% F1 R/%
湖泊水面/% 内陆滩涂/% 村庄/% 沼泽/% 水浇地/%
ResNet 98.68 90.65 99.85 96.57 95.88 96.67 99.14 0.97 98.06
CNN2D1D 99.03 87.31 99.56 93.65 96.44 96.03 98.90 0.96 97.83
CNN3D 98.69 88.45 99.47 94.83 96.68 96.20 98.93 0.97 97.78
ViT 99.66 93.22 98.48 97.50 99.06 98.11 99.69 0.98 98.96
SSRN 99.55 97.99 99.80 99.30 99.04 99.19 99.93 0.99 99.50
SSTN 99.47 97.37 99.80 99.96 99.14 99.05 99.83 0.99 99.41
Tab.4  Wetland classification accuracy using different patch-based methods
Fig.5  Classification results using different patch-based methods
类型 模型 每类样本的分类准确率 OA/% mAP/% F1 R/% OA-AB/%
湖泊水
面/%
内陆滩
涂/%
村庄/% 沼泽/% 水浇地/%



SVM 96.68 53.85 96.93 40.63 92.38 80.30 84.00 0.79 86.14 83.90
AdaBoost 97.86 64.40 97.24 59.22 92.71 86.44 92.80 0.85 90.76 89.48
RF 97.44 60.11 96.12 53.25 91.44 84.05 90.92 0.83 88.72 85.33
CNN1D 97.32 85.21 99.45 84.85 95.87 94.30 98.13 0.94 95.94 94.54
RNN 96.47 81.47 99.45 86.61 96.01 93.12 97.20 0.93 94.55 94.03
SSTN(Pixel) 94.84 83.40 99.16 85.62 94.56 92.55 95.98 0.92 92.48 93.79
ViT(Pixel) 95.95 88.38 99.00 79.04 95.53 93.95 97.75 0.93 95.01 95.11



ResNet 96.97 87.69 98.07 92.37 97.54 95.10 98.74 0.95 96.36 96.67
CNN2D1D 97.61 82.49 99.49 84.62 96.18 93.79 97.99 0.94 96.28 96.03
CNN3D 95.88 85.54 98.67 92.54 94.62 93.75 97.94 0.94 95.44 96.20
ViT 95.53 81.71 98.50 85.77 93.96 92.35 96.66 0.92 93.47 98.11
SSRN 99.88 97.36 99.98 94.21 99.19 99.09 99.95 0.99 99.62 99.19
SSTN 98.05 95.43 99.65 94.79 97.82 97.51 99.57 0.98 98.02 99.05
Tab.5  Wetland classification accuracy based on pixel-based method and patch-based method after removing low signal-to-noise ratio bands
网络 时间 网络 时间 网络 时间
SVM 63.36 SSTN(Pixel) 14.76±0.15 SSRN 35.19±3.02
RF 1.01(多核),7.11(单核) RNN 14.93±0.50 ViT 35.02±5.78
AdaBoost 98.26 ResNet 21.74±0.38 SSTN 21.29±0.40
CNN1D 14.17±0.17 CNN2D1D 21.72±0.49
ViT(Pixel) 14.76±0.17 CNN3D 20.72±0.31
Tab.6  Training time of each epoch(s)
Fig.6  Epoch required to reach the highest overall accuracy
Fig.7  Training overall accuracy per epoch
[1] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2):147-161.
[1] Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(2):147-161.
[2] 朱金峰, 周艺, 王世新, 等. 1975—2018年白洋淀湿地变化分析[J]. 遥感学报, 2019, 23(5):971-986.
[2] Zhu J F, Zhou Y, Wang S X, et al. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing[J]. Journal of Remote Sensing, 2019, 23(5):971-986.
[3] 韦嫦, 付波霖, 覃娇玲, 等. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2):251-260.doi:10.6046/zrzyyg.2021205.
[3] Wei C, Fu B L, Qin J L. et al. Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2022, 34(2):251-260.doi:10.6046/zrzyyg.2021205.
[4] 伊力哈穆江·艾尼弯, 孔翠翠, 马利刚, 等. 基于中分辨率影像湿地离散水体提取研究——以新疆阿勒泰科克苏湿地为例[J]. 安徽农业科学, 2022, 50(11):50-55.
[4] Elhamjan· A, Kong C C, Ma L G,et al. Research on the extraction of discrete water body in wetland based on medium-resolution image:Taking Altay Kekesu wetland in Xinjiang as an example[J]. Journal of Anhui Agricultural Sciences, 2022, 50(11):50-55.
[5] 崔囤月, 王世东, 张学军. 1991—2021年雄安新区土地利用与植被覆盖变化遥感研究[J]. 自然资源遥感, 2023, 35(4):214-225.doi:10.6046/zizyyg.2022311.
[5] Cui D Y, Wang S D, Zhang X J. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4):214-225.doi:10.6046/zizyyg.2022311.
[6] 梁爽, 宫兆宁, 赵文吉, 等. 基于多季相Sentinel-2影像的白洋淀湿地信息提取[J]. 遥感技术与应用, 2021, 36(4):777-790.
doi: 10.11873/j.issn.1004-0323.2021.4.0777
[6] Liang S, Gong Z N, Zhao W J, et al. Information extraction of Baiyangdian wetland based on multi-season sentinel-2 images[J]. Remote Sensing Technology and Application, 2021, 36(4):777-790.
[7] Liu C, Tao R, Li W, et al. Joint classification of hyperspectral and multispectral images for mapping coastal wetlands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,14:982-996.
[8] 孙伟伟, 任凯, 肖晨超, 等. 资源一号02D卫星高光谱与多光谱融合数据滨海湿地分类应用[J]. 航天器工程, 2020, 29(6):162-168.
[8] Sun W W,, Ren K, Xiao C C, et al. Classification of coastal wetlands based on hyperspectral and multispectral fusion data of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6):162-168.
[9] 河北省生态环境厅. 2022河北省生态环境状况公报[R/OL]. (2022-05)[2023-11-06]. http://hbepb.hebei.gov.cn/res/hbhjt/upload/file/20230602/bd9d635a2555484786a9891052dbfa49.pdf.
url: http://hbepb.hebei.gov.cn/res/hbhjt/upload/file/20230602/bd9d635a2555484786a9891052dbfa49.pdf
[9] Department of ecological environment of Hebei Province. 2022 Report on the State of the Ecology and Environment in HeBei Province[R/OL]. (2022-05)[2023-11-06]. http://hbepb.hebei.gov.cn/res/hbhjt/upload/file/20230602/bd9d635a2555484786a9891052dbfa49.pdf.
url: http://hbepb.hebei.gov.cn/res/hbhjt/upload/file/20230602/bd9d635a2555484786a-9891052dbfa49.pdf
[10] 资源一号02D卫星总体概况及影像产品[J]. 航天器工程, 2020, 29(6):3-14.
[10] General situation and image products of ZY-1 02D satellite[J]. Spacecraft Engineering, 2020, 29(6):3-14.
[11] 刘银年, 孙德新, 梁建, 等. 资源一号02D卫星高光谱相机在轨性能及稳定性评估[J]. 航天器工程, 2020, 29(6):93-97.
[11] Liu Y N, Sun D X, Liang J, et al. Overview of ZY-1-02D satellite AHSI on-orbit performance and stability[J]. Spacecraft Engineering, 2020, 29(6):93-97.
[12] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(1):258619.
[13] Mou L, Ghamisi P, Zhu X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655.
[14] He K, Zhang X, Ren S, et al. Deep residual learning for image re-cognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:770-778.
[15] Ben HamidaA, Benoit A, Lambert P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4420-4434.
[16] Li Y, Zhang H, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.
[17] Zhong Z, Li J, Luo Z, et al. Spectral-spatial residual network for hyperspectral image classification:A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858.
[18] Paoletti M E, Haut J M, Plaza J, et al. A new deep convolutional neural network for fast hyperspectral image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,145:120-147.
[19] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words:Transformers for image recognition at scale[J/OL]. 2020(2020-10-22). https://arxiv.org/abs/2010.11929.
url: https://arxiv.org/abs/2010.11929
[20] Zhong Z, Li Y, Ma L, et al. Spectral-spatial transformer network for hyperspectral image classification:A factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-15.
[1] ZOU Haijing, ZOU Bin, WANG Yulong, ZHANG Bo, ZOU Lunwen. Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy[J]. Remote Sensing for Natural Resources, 2025, 37(3): 1-8.
[2] GUO Wei, LI Yu, JIN Haibo. Detecting ships from SAR images based on high-dimensional contextual attention and dual receptive field enhancement[J]. Remote Sensing for Natural Resources, 2025, 37(3): 104-112.
[3] WEI Lin, RAN Haoxiang, YIN Yuping. A classification network of hyperspectral images with multi-scale feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(3): 113-122.
[4] CEHN Lanlan, FAN Yongchao, XIAO Haiping, WAN Junhui, CHEN Lei. Predicting surface subsidence in large-scale mining areas based on time-series InSAR and the IRIME-LSTM model[J]. Remote Sensing for Natural Resources, 2025, 37(3): 245-252.
[5] ZHENG Zongsheng, GAO Meng, ZHOU Wenhuan, WANG Zhenghan, HUO Zhijun, ZHANG Yuewei. Densely connected multiscale semantic segmentation for land cover based on the iterative optimization strategy for samples[J]. Remote Sensing for Natural Resources, 2025, 37(2): 11-18.
[6] PANG Min. An intelligent platform for extracting patches from multisource domestic satellite images and its application[J]. Remote Sensing for Natural Resources, 2025, 37(2): 148-154.
[7] ZHANG Yiran, PAN Bin, XU Xia, ZHU Junfeng. Subpixel-level area estimation of green algae based on spectral unmixing in dictionary learning[J]. Remote Sensing for Natural Resources, 2025, 37(2): 88-95.
[8] CHEN Xin, SHI Guoping. Machine learning-based inversion of aerosol optical depth inversion from FY-4A data[J]. Remote Sensing for Natural Resources, 2025, 37(1): 213-220.
[9] HU Boyang, SUN Jianguo, ZHANG Qian, YANG Yunrui. Residual trend method based on regional modeling and machine learning for attribution of vegetation changes[J]. Remote Sensing for Natural Resources, 2025, 37(1): 46-53.
[10] HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
[11] ZHANG Dongyun, WU Tianjun, LI Manjia, GUO Yifei, LUO Jiancheng, DONG Wen. Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis[J]. Remote Sensing for Natural Resources, 2024, 36(4): 124-134.
[12] LI Wei, FAN Yanguo, ZHOU Peixi. Improved Transformer-based hyperspectral image classification method for surface features: A case study of the Yellow River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 137-145.
[13] ZHANG Chungui, PENG Jida. Air freshness monitoring technology based on meteorology and remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 163-173.
[14] ZHANG Ruirui, XIA Lang, CHEN Liping, DING Chenchen, ZHENG Aichun, HU Xinmiao, YI Tongchuan, CHEN Meixiang, CHEN Tianen. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 216-224.
[15] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech