Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 158-164     DOI: 10.6046/gtzyyg.2015.04.24
Technology Application |
Monitoring of surface subsidence using PSInSAR with TerraSAR-X high resolution data
DING Rongrong1, XU Jia1, LIN Xiaobin2, XU Kang3
1. School of Earth Science and Engineering, Hohai University, Nanjing 210098, China;
2. Fujian Port Management Bureau Survey Center, Fuzhou 350009, China;
3. Jiangsu Province Surveying & Mapping Engineering Institute, Nanjing 210013, China
Download: PDF(9426 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this study, interferometric point target analysis (IPTA) was used to monitor the surface subsidence of Changzhou City caused by factories' immoderate exploitation of groundwater on the basis of thirty-seven TerraSAR-X high resolution stripmap data collected in this area between October 2011 and July 2013. The results showed that several settlements appeared in Wujin area of Changzhou City, with the largest average subsidence rate up to 31.494 mm/a; A comparison with the average settlement rate of ASAR data shows that TerraSAR-X data could not only improve high density of PS points but also describe detailed changes and the micro-displacement situation of the scattering object, which indicates the advantages of TerraSAR-X high resolution stripmap data applied to monitoring the surface deformation. In this paper, the monitoring of land subsidence along Shenhai expressway of Changzhou by TerraSAR-X data reflects the prospects of TerraSAR-X data in monitoring artificial linear features. The survey results of bench mark verify the consistency of monitoring results and the reliability of IPTA used to monitor the surface subsidence in the city.

Keywords multi-resolution segmentation      variogram function(VF)      texture extracting      high resolution     
:  P237  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Changzhen
SHU Hong
ZHANG Zhi
MA Guorui
Cite this article:   
LIU Changzhen,SHU Hong,ZHANG Zhi, et al. Monitoring of surface subsidence using PSInSAR with TerraSAR-X high resolution data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 158-164.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.24     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/158

[1] 廖明生, 裴媛媛, 王寒梅, 等.永久散射体雷达干涉技术监测上海地面沉降[J].上海国土资源, 2012(3):5-10. Liao M S, Pei Y Y, Wang H M, et al.Subsidence monitoring in Shanghai using the PSInSAR technique[J].Shanghai Land & Resources, 2012(3):5-10.

[2] Even M, Schunert A, Schulz K, et al.Atmospheric phase screen-estimation for PSInSAR applied to TerraSAR-X high resolution spotlight-data[C]//2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu, HI:IEEE, 2010:2928-2931.

[3] 周红满, 胡金星, 柳想, 等.基于PS技术的深圳市地面沉降监测[J].测绘工程, 2013, 22(2):70-74. Zhong H M, Hu J X, Liu X, et al.Ground deformation in the Shenzhen city using permanent scatterer technique[J].Engineering of Surveying and Mapping, 2013, 22(2):70-74.

[4] 郭炳跃, 何敏, 刘建东.利用PS-InSAR技术监测南通市区地面沉降[J].地质灾害与环境保护, 2011, 22(4):103-107. Guo B Y, He M, Liu J D.Monitoring the ground subsidence in Nantong city with the PS-InSAR technology[J].Journal of Geological Hazards and Environment Preservation, 2011, 22(4):103- 107.

[5] 李永生, 张景发, 罗毅, 等. 利用高分辨率聚束模式TerraSAR- X影像的PSInSAR监测地表变形[J].武汉大学学报:信息科学版, 2012, 37(12):1452-1455, 1514. Li Y S, Zhang J F, Luo Y, et al.Monitoring land deformation using PSInSAR with TerraSAR-X high resolution spotlight SAR images[J].Geomatics and Information Science of Wuhan University, 2012, 39(12):1452-1455, 1514.

[6] 何秀凤, 仲海蓓, 何敏.基于PS-InSAR和GIS空间分析的南通市区地面沉降监测[J].同济大学学报:自然科学版, 2011, 39(1):129-134. He X F, Zhong H B, He M.Ground subsidence detection of Nantong city based on PS-InSAR and GIS spatial analysis[J].Journal of Tongji University:Natural Science, 2011, 39(1):129-134.

[7] 范景辉, 李梅, 郭小方, 等.基于PSInSAR方法和ASAR数据监测天津地面沉降的试验研究[J].国土资源遥感, 2007, 19(4):23-27, 124.doi:10.6046/gtzyyg.2007.04.05. Fan J H, Li M, Guo X F, et al.A preliminary study of the subsidence in Tianjin area using ASAR images based on PSInSAR technique[J].Remote Sensing for Land & Resources, 2007, 19(4):23- 27, 124.doi:10.6046/gtzyyg.2007.04.05.

[8] Strzelczyk J, Porzycka S, Lesniak A.Analysis of ground deformations based on parallel geo-statistical computations of PSInSAR data[C]//Proceedings of the 17th International Conference on Geoinformatics.Fairfax, VA:IEEE, 2009:1-6.

[9] Ferretti A, Prati C, Rocca F L.Permanent scatterers in SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.

[10] Ferretti A, Fumagalli A, Novali F, et al.A new algorithm for processing interferometric data-stacks:SqueeSAR[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.

[11] 姜江, 宋伟东.基于GAMMA的雷达影像干涉测量分析[J].交通科技与经济, 2009, 11(1):45-46, 53. Jiang J, Song W D.The study on Radar interferometry with GAMMA[J].Technology & Economy in Areas of Communications, 2009, 11(1):45-46, 53.

[12] Porzycka-Strzelczyk S, Lesniak A.The preliminary temporal analysis of ground deformations in the area of Dabrowski Coal Basin(south Poland)[C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu, HI:IEEE, 2010:903-905.

[13] 林珲, 陈富龙, 江利明, 等.多基线差分雷达干涉测量的大型人工线状地物形变监测[J].地球信息科学学报, 2010, 12(5):718-725. Lin H, Chen F L, Jiang L M, et al.Preliminary research on large-scale man-made linear features deformation monitoring using multi-baseline differential SAR interferometry[J].Journal of Geo-Information Science, 2010, 12(5):718-725.

[14] 葛大庆.区域性地面沉降InSAR监测关键技术研究[D].北京:中国地质大学, 2013. Ge D Q.Research on the Key Techniques of SAR Interferometry for Regional Land Subsidence Monitoring[D].Beijing:China University of Geoscience, 2013.

[1] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[2] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[3] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[4] Lihua FU, Ce ZHANG. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 98-105.
[5] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[6] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[7] Qifang XIE, Guoqing YAO, Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
[8] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
[9] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[10] Liuqing WU, Xiangyun HU. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land & Resources, 2019, 31(1): 71-78.
[11] FAN Min, SUN Xiaofei, SU Fenghuan, JIANG Huabiao, HAN Lei. Application analysis of remote sensing dynamic monitoring for geological hazards in southwest mountainous areas using domestic high resolution satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 85-89.
[12] SU Tengfei, ZHANG Shengwei, LI Hongyu. Heuristics optimized segmentation of agricultural area for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 106-113.
[13] YUE Mengxue, QIN Kun, ZHANG Enbing, ZHANG Ye, ZENG Cheng. Residential area extraction for high resolution remote sensing image based on data field and density clustering[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 92-97.
[14] DAI Jingjing, WANG Denghong, WU Yanan. Investigation of rare metal mine using high resolution remote sensing data: A case study of No. 414 rare metal mine in Yichun, Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 104-110.
[15] LI Jinxiang, LI Zhiqiang, LI Shuai, WANG Wei, CHEN Yong. The method for semi-automatic extraction of residential area from high resolution remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech