Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 95-103     DOI: 10.6046/gtzyyg.2019.03.13
|
Seismic image classification based on gravitational self-organizing map
Hui HUANG1,2, Xiongwei ZHENG3, Genyun SUN1,2(), Yanling HAO1,2, Aizhu ZHANG1,2, Jun RONG1,2, Hongzhang MA4
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China
2. Laboratory for Marine Resources Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
4. College of Science, China University of Petroleum, Qingdao 266580, China
Download: PDF(4443 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The recognition and extraction of seismic targets in high resolution post-earthquake images pose great challenge to the traditional image classification method. This paper introduces an object-oriented classification method for high resolution post-earthquake images classification, which integrates fractal texture features into a gravitational self-organizing map (gSOM). The method can be summarized as follows. First of all, the mean shift (MS) segmentation algorithm is adopted for initial segmentation in order to obtain homogeneous geographical objects, and the objects are regarded as the basic classification units in the subsequent process. Secondly, the characteristics of objects are quantified by the adaptive combination of the spectral bands and the fractal second order statistics as the texture information extracted from the original seismic image. Finally, the objects as classification units are clustered under the gSOM. For the purpose of controlling the uncertainty in the classification results, these various clustered results are assembled by the consensus function with the least cost. The qualitative and quantitative experiments on the Wenchuan County seismic images demonstrate the effectiveness and accuracy of the proposed method, which not only maintains the integrity of large damage targets, but also reflects details of the small targets at the same time. Also, the method shows the potential in the new technology for high resolution post-event image classification.

Keywords fractal texture      gSOM      high resolution remote sensing      seismic targets      object-oriented classification     
:  TP753  
Corresponding Authors: Genyun SUN     E-mail: genyunsun@163.com
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui HUANG
Xiongwei ZHENG
Genyun SUN
Yanling HAO
Aizhu ZHANG
Jun RONG
Hongzhang MA
Cite this article:   
Hui HUANG,Xiongwei ZHENG,Genyun SUN, et al. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.13     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/95
特征名称 计算公式 说明
均值 μFD=1MNi=1Mj=1NIFD(i,j) 计算区域的分形维数的均值
方差 σFD=1MNi=1Mj=1N(IFD(i,j)-μFD)2 计算区域的分形维数的方差
对比度(CON) CONFD=n=1Ln2[i=1Mj=1Np~(i,j)],|i-j|=n 度量局部区域变化,值越小纹理越均匀
相异性(DIS) DISFD=i=1Mj=1Np~(i,j)i-j 描述区域内像素与邻近像素的相异性
空隙度(L) LFD=1MNi=0Mj=0NIFD(i,j)2(1MNi=0Mj=0NIFD(i,j))2-1 计算区域中分形维数的“块度”,空隙度越大表明区域同质性越强
角二阶矩(ASM) ASMFD=i=1Mj=1Np~2(i,j)lg[p~(i,j)]
其中:
p~(i,j)=12πσIFDexp(-(IFD(i,j)-μFD)22σFD2)
度量区域的紊乱性,值越小,表明区域越均匀,其中,p~(i,j)为分形维数图像中坐标为(i,j)处像素点属于所在类的归一化概率值
熵(ENT) ENTFD=-i=1Mj=1Np~(i,j)lg[p~(i,j)] 度量区域内像素的随机性,值越大表明纹理越复杂
同质性(HOM) HOMFD=i=1Mj=1Np~(i,j)1+i-jp~(i,j) 描述区域内像素分布均匀度
偏斜度(S) SFD=E(x-μFD)σFD3 描述区域内像素分形纹理值的不对称性
逆差距(IDM) IDMFD=i=1Mj=1N11+(i-j)2p~(i,j) 类似于同质性,但是更强调区域内像素之间的差异性
Tab.1  Formulas and meanings of fractal texture features
Fig.1  General flowchart of the high resolution seismic image classification
Fig.2  Seismic images T1 and T2, MS segmentation results and the corresponding ROI
Fig.3  Comparison of the classification results of T1 and T2
完整房屋 森林 倒塌房屋 小路 草地 生产者精度/%
完整房屋 5 297 0 0 1 161 0 40.35
森林 114 54 846 4 0 3 009 94.07
倒塌房屋 7 716 3 459 45 093 891 3 077 99.99
小路 0 0 0 9 704 0 82.54
草地 0 0 0 1 25 628 80.81
用户精度/% 82.02 94.61 74.86 100.00 100.00
总体精度: 87.86% Kappa系数: 0.83
Tab.2  Confusion matrix and accuracy assessment of T1 using SVM
完整房屋 森林 倒塌房屋 小路 草地 生产者精度/%
完整房屋 11 495 77 0 1 474 533 87.57
森林 0 56 407 4 0 3 009 96.74
倒塌房屋 1 632 1 821 45 093 583 2 456 99.99
小路 0 0 0 9 700 309 82.50
草地 0 0 0 0 25 407 80.11
用户精度/% 84.65 94.93 87.41 96.91 100.00
总体精度: 92.56% Kappa系数: 0.90
Tab.3  Confusion matrix and accuracy assessment of T1 using the proposed algorithm
完整房屋 森林 倒塌房屋 小路 草地 泥石流 生产者精度/%
完整房屋 7 178 0 470 0 36 0 45.71
森林 0 85 013 3 849 0 2 780 234 87.83
倒塌房屋 8 097 6 678 45 437 2 130 1 567 29 86.97
小路 255 33 1 020 4 920 0 0 69.79
草地 276 5 070 1 471 0 6 204 624 58.60
泥石流 0 0 0 0 0 22 669 96.23
用户精度/% 93.41 92.53 71.06 79.00 45.47 100.00
总体精度: 83.20% Kappa系数: 0.76
Tab.4  Confusion matrix and accuracy assessment of T2 using SVM
完整房屋 森林 倒塌房屋 小路 草地 泥石流 生产者精度/%
完整房屋 15 630 0 1084 0 160 0 98.89
森林 0 92 864 0 0 18 0 95.94
倒塌房屋 176 3 926 51 163 0 1 064 0 97.93
小路 0 0 0 7 050 0 0 100.00
草地 0 4 0 0 9 345 0 88.27
泥石流 0 0 0 0 0 23 556 100.00
用户精度/% 92.63 99.98 90.83 100.00 99.96 100.00
总体精度: 96.88% Kappa系数: 0.96
Tab.5  Confusion matrix and accuracy assessment of T2 using the proposed algorithm
[1] Dong L, Shan J . A comprehensive review of earthquake-induced building damage detection with remote sensing techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,84:85-99.
[2] Vu T T .Rapid disaster damage estimation[C]//International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012, xxxix-b8:65-69.
[3] Liu J H, Shan X J, Yin J Y . Automatic recognition of damaged town buildings caused by earthquake using remote sensing information:Taking the 2001 Bhuj,India,earthquake and the 1976 Tangshan,China,earthquake as examples[J]. Acta Seismologica Sinica, 2004,17(6):686-696.
[4] Li X, Yang W, Ao T , et al. An improved approach of information extraction for earthquake-damaged buildings using high-resolution imagery[J]. Journal of Earthquake and Tsunami, 2012,5(4):389-399.
[5] Fukuoka T , Koshimura S.Quantitative analysis of tsunami debris by object-based image classification of the aerial photo and satellite image[J]. Journal of Japan Society of Civil Engineers Ser B2, 2012, 68:I_371-I_375.
[6] Vatsavai R, Tuttle M, Bhaduri B , et al. Rapid damage assessment using high-resolution remote sensing imagery:Tools and techniques [C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2011: 1445-1448.
[7] Cheng J, Li L, Luo B , et al. High-resolution remote sensing image segmentation based on improved RIU-LBP and SRM[J]. Eurasip Journal on Wireless Communications and Networking, 2013,2013(1):1-12.
[8] Kuldeep, Garg P K . Texture based information extraction from high resolution images using object based classification approach [C]//Proceedings of the International Workshop on Earth Observation and Remote Sensing Applications, 2014: 299-303.
[9] Backes A R, Casanova D, Bruno O M . Color texture analysis based on fractal descriptors[J]. Pattern Recognition, 2012,45(5):1984-1992.
[10] Florindo J B, Bruno O M . Texture analysis by multi-resolution fractal descriptors[J]. Expert Systems with Applications, 2013,40(10):4022-4028.
[11] Pentland A P . Fractal-based description of natural scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983,6(6):661-674.
[12] 魏向辉 . 基于分形理论的遥感影像土地利用分类研究[D]. 北京:中国地质大学(北京), 2016.
[12] Wei X H . Study on Classification of Land Use with Remote Sensing Image Based on Fractal Theory[D]. Beijing:China University of Geosciences(Beijing), 2016.
[13] 杨骇, 韩留生, 陈水森 , 等. 一种基于城市水体指数与分形几何算法的OLI遥感影像水体提取方法[J].测绘通报, 2018(4):44-49.
[13] Yang H, Han L S, Chen S S , et al. Extracting water information from OLI remote sensing images based on city water index and fractal geometry[J].Bulletin of Surveying and Mapping, 2018(4):44-49.
[14] Filippi A, Klein A G, Dobreva I , et al. Self-Organizing Map-Based Applications in Remote Sensing[M]. INTECH Open Access Publisher, 2010.
[15] Jain D K, Dubey S B, Choubey R K , et al. An approach for hyperspectral image classification by optimizing SVM using self organizing map[J]. Journal of Computational Science, 2017,25:252-259.
[16] Cracknell M J, Reading A M, Caritat P D . Multiple influences on regolith characteristics from continental-scale geophysical and mineralogical remote sensing data using self-organizing maps[J]. Remote Sensing of Environment, 2015,165:86-99.
[17] Ilc N, Dobnikar A . Generation of a clustering ensemble based on a gravitational self-organising map[J]. Neurocomputing, 2012,96(1):47-56.
[18] Tao W, Jin H, Zhang Y . Color image segmentation based on mean shift and normalized cuts[J]. IEEE Transactions on Cybernetics, 2007,37(5):1382-1389.
[19] 余国斌, 陈爱斌, 孙华 , 等. 基于Mean Shift的高分辨率遥感影像分割方法[J]. 中南林业科技大学学报, 2012,32(10):168-172.
[19] Yu G B, Chen A B, Sun H , et al. High-resolution remote sensing image segmentation approach based on mean shift[J]. Journal of Central South University of Forestry and Technology, 2012,32(10):168-172.
[20] 曹帆之, 朱述龙, 朱宝山 , 等. 均值漂移与卡尔曼滤波相结合的遥感影像道路中心线追踪算法[J]. 测绘学报, 2016,45(2):205-212.
[20] Can F Z, Zhu S L, Zhu B S , et al. Tracking road centerlines from remotely sensed imagery using mean shift and Kalman filtering[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(2):205-212.
[21] Ming D P, Ci T Y, Cai H , et al. Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2012,9(5):813-817.
[22] Mandelbrot B B . Self-affine fractals and fractal dimension[J]. Phys Scripta, 1985,32(4):257-260.
[23] Florindo J B, Backes A R, Castro M D , et al. A comparative study on multiscale fractal dimension descriptors[J]. Pattern Recognition Letters, 2012,33(6):798-806.
[24] Julesz B , Experiments in the visual perception of texture[J]. Scientific American, 1975,232(4):34-43.
[25] Azimi J, Fern X . Adaptive cluster ensemble selection[J]. Statistical Analysis and Data Mining the Asa Data Science Journal, 2009,1(3):128-141.
[26] Fern X Z, Brodley C E . Solving cluster ensemble problems by bipartite graph partitioning [C]//Proceedings of the International Conference on Machine Learning, 2004: 36.
[27] Fern X Z, Wei L . Cluster ensemble selection[J]. Statistical Analysis and Data Mining, 2008,1(3):128-141.
[28] Vega-Pons S, Correa-Morris J, Ruiz-Shulcloper J . Weighted Cluster Ensemble Using a Kernel Consensus Function[M]. Springer Berlin Heidelberg, 2008.
[29] 罗会兰, 危辉 . 一致性函数研究[J]. 计算机工程与应用, 2009,45(17):1-4.
doi: 10.3778/j.issn.1002-8331.2009.17.001
[29] Luo H L, Wei H . Study on consensus function based on clustering algorithms of categorical data. Computer Engineering and Applications, 2009,45(17):1-4.
[30] Strehl A, Ghosh J . Relationship-Based Clustering and Visualization for High-Dimensional Data Mining[M]. INFORMS, 2003.
[1] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[2] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[3] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[4] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[5] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[6] Lihua FU, Ce ZHANG. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 98-105.
[7] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[8] Yufeng LIU, Ying PAN, Hu LI. Study of crown information extraction of Picea schrenkiana var. tianschanicabased on high-resolution satellite remote sensing data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 112-119.
[9] Qifang XIE, Guoqing YAO, Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
[10] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[11] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
[12] SU Tengfei, ZHANG Shengwei, LI Hongyu. Heuristics optimized segmentation of agricultural area for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 106-113.
[13] DAI Jingjing, WANG Denghong, WU Yanan. Investigation of rare metal mine using high resolution remote sensing data: A case study of No. 414 rare metal mine in Yichun, Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 104-110.
[14] HUA Yongchun, LI Zengyuan, GAO Zhihai, GUO Zhong. Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 71-77.
[15] LIANG Jianping, MA Daxi, MAO Dehua, WANG Zongming. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech