Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 112-119     DOI: 10.6046/gtzyyg.2016.02.18
Technology Application |
Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt
ZHANG Wei1,3, JIN Moushun2,3, ZHANG Shaopeng2, CHEN Ling1, ZHONG Chang1, DONG Lina1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Institute of Remote Sensing Applications, Aerial Remote Sensing Bureau of China Coal, Xi'an 710054, China;
3. The BeiDou Aerospace Science and Technology Group, Beijing 100070, China
Download: PDF(8339 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Through geological interpretation and alteration anomaly information extraction with remote sensing, rapid pre-selection of large ore concentration areas and delineation of potential mineralization areas can be carried out. In this paper, with the Hongshui River region of the East Kunlun metallogenic belt as a case study, by using WorldView-2 remote sensing images as major data source and adopting methods of image rectification, false color composition, image enhancement, data fusion, alteration anomaly information extraction, field validation, chemical analysis and geological integrated analysis, the authors predicted the potential regions of mineral resources. The results show that the remote sensing technology using high resolution satellite images can be used as an effective method for detection of potential mineral resources enrichment region, which can meet the requirements of mineral resources exploration and assessment in the arid and semi-arid regions in West China and provide the basic data and reference for the deployment of mineral resources exploration.

Keywords multispectral remote sensing      vegetation cover      classification feature      classification methods     
:  TP79  
Issue Date: 14 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Li
JIANG Weiwei
Cite this article:   
YAN Li,JIANG Weiwei. Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 112-119.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.02.18     OR     https://www.gtzyyg.com/EN/Y2016/V28/I2/112

[1] 耿新霞,杨建民,张玉君,等.ASTER数据在浅覆盖区蚀变遥感异常信息提取中的应用——以新疆西准噶尔包古图斑岩铜矿岩体为例[J].地质论评,2008,54(2):184-191. Geng X X,Yang J M,Zhang Y J,et al.The application of aster remote sensing data for extraction of alteration anomalies information in shallow overburden area-a case study of the baoguto porphyry copper deposit intrusion in western Junggar,Xinjiang[J].Geological Review,2008,54(2):184-191.

[2] 张玉君,杨建民,姚佛军.多光谱遥感技术预测矿产资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J].地学前缘,2007,14(5):63-70. Zhang Y J,Yang J M,Yao F J.The potential of multi-spectral remote sensing techniques for mineral exploration:Taking the Mongolian Oyu Tolgoi Cu-Au deposit as an example[J].Earth Science Frontiers,2007,14(5):63-70.

[3] 方洪宾,李志中.遥感化探信息综合分析在地质找矿中的应用研究[J].国土资源遥感,1998,10(4):33-36.doi:10.6046/gtzyyg.1998.04.08. Fang H B,Li Z Z.The application of integration of remote sensing and chemical exploration information analysis to studying geological mineral deposit prediction[J].Remote Sensing for Land and Resources,1998,10(4):33-36.doi:10.6046/gtzyyg.1998.04.08.

[4] 杨金中,方洪宾,张玉君,等.中国西部重要成矿带遥感找矿异常提取的方法研究[J].国土资源遥感,2003,15(3):50-53.doi:10.6046/gtzyyg.2003.03.12. Yang J Z,Fang H B,Zhang Y J,et al.Remote sensing anomaly extraction in important metallogenic belts of western China[J].Remote Sensing for Land and Resources,2003,15(3):50-53.doi:10.6046/gtzyyg.2003.03.12.

[5] 吴昀昭,田庆久,陈骏,等.新疆哈密黄山地区多金属矿床遥感地质信息提取与找矿模式研究[J].高校地质学报,2004,10(1):114-120. Wu Y Z,Tian Q J,Chen J,et al.Remote sensing exploration model on polymetallic mineralizations in Huangshan Area,Hami Region[J].Geological Journal of China Universities,2004,10(1):114-120.

[6] 陈建明,孙卫东,闫柏琨,等.ASTER多光谱遥感异常提取在新疆天湖铁矿中的应用[J].新疆地质,2009,27(4):368-372. Chen J M,Sun W D,Yan B K,et al.The application and research of the anomaly extraction process base on the ASTER multi-spectral remote sensing in Tianhu iron ore mine[J].Xinjiang Geology,2009,27(4):368-372.

[7] 张玉君,姚佛军.应用多光谱ASTER数据对ETM遥感异常的定性判别研究——以东昆仑五龙沟为例[J].岩石学报,2009,25(4):963-970. Zhang Y J,Yao F J.Application study of multi-spectral ASTER data for determination of ETM remote sensing anomaly property:Taking Wulonggou region of eastern Kunlun mountain range as example[J].Acta Petrologica Sinica,2009,25(4):963-970.

[8] 张微,杨金中,方洪宾,等.东昆仑—阿尔金地区遥感地质解译与成矿预测[J].西北地质,2010,43(4):288-294. Zhang W,Yang J Z,Fang H B,et al.Remote sensing interpretation and metallogenic prediction in the metallogenic belts of East Kunlun and Altun Mts[J].Northwestern Geology,2006,43(4):288-294.

[9] 吴加敏,张守林,孟方.宁夏卫宁北山地区遥感地质找矿模式研究[J].宁夏工程技术,2007,6(3):259-262. Wu J M,Zhang S L,Meng F.On prospecting model for minerals by remote sensing geology in Weiningbei Mountain area[J].Ningxia Engineering Technology,2007,6(3):259-262.

[10] 郭娜,陈建平,唐菊兴.藏东东达山地区遥感找矿地质异常提取方法研究[J].地质与勘探,2008,44(4):69-73. Guo N,Chen J P,Tang J X.Remote sensing information extraction of mineralizing anomaly in the Dongdashan area of eastern Tibet[J].Geology and Prospecting,2008,44(4):69-73.

[11] 张微,张伟,刘世英,等.基于核PCA方法的高分辨率遥感图像自动解译[J].国土资源遥感,2011,23(3):82-87.doi:10.6046/gtzyyg.2011.03.15. Zhang W,Zhang W,Liu S Y,et al.Automatic interpretation of high resolution remotely sensed images by using kernel method[J].Remote Sensing for Land and Resources,2011,23(3):82-87.doi:10.6046/gtzyyg.2011.03.15.

[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[3] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[4] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[5] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[6] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[7] WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image[J]. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
[8] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[9] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[10] Jiaming LAI, Wunian YANG. Dynamic changes of vegetation cover in natural forest area of western Sichuan in recent 29 years based on RS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 132-138.
[11] Xiaodong ZHANG, Xiangnan LIU, Zhipeng ZHAO, Yinxin ZHAO, Yuxue MA, Haiyan LIU. Spatial-temporal pattern analysis of the vegetation coverage and geological hazards in Yanchi County based on dimidiate pixel model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 195-201.
[12] Yuting ZHANG, Zhenfei ZHANG, Zhi ZHANG. Remote sensing study of vegetation coverage during the period 1992—2014 in Dananhu desert area, Xinjiang[J]. Remote Sensing for Land & Resources, 2018, 30(1): 187-195.
[13] ZHANG Chengcai, LUO Weiran, DOU Xiaonan, WANG Jinxin. Research on the method of using Landsat8 data to improve FCD model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 33-38.
[14] ZHENG Zhaoju, ZENG Yuan, ZHAO Yujin, ZHAO Dan, WU Bingfang. Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 128-136.
[15] LIU Ying, HOU Enke, YUE Hui. Dynamic monitoring and trend analysis of vegetation change in Shendong mining area based on MODIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 132-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech